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Abstract

Commutative Grobner bases over fields K have the strong property of yielding canonical
reductions, which is equivalent to having Grobner representations for polynomials. The
transition to the free algebra K(X) is essential for the understanding of K-algebras as
quotients of the tensor algebra. Furthermore, Grobner theory inherits properties from
the commutative case for finitely generated ideals. This motivates the idea of introducing
non-commutative Grobner bases for the free polynomial ring over the integers Z(X). The
main goal is to achieve a version of Buchberger’s algorithm that uses criteria to determine
zero reductions of pairs. After a revisit on commutative Grobner bases over fields, we
introduce the general case with arbitrary monoids and commutative, unital coefficient
rings. This results in important insights concerning the structure of left syzygy modules
and justifies the use of S-polynomials. However, to obtain the strength of Grobner bases
over fields we need to introduce new G-polynomials next to S-polynomials, to ensure the
divisibility of coefficients. Therefore, we analyze the commutative case first and obtain
criteria that resemble the product criterion and the chain criterion. New phenomena
arise when dealing with non-commutative polynomials, which lead to infinite Grobner
bases and require adjustments of the criteria. The lack of a general product criterion over
rings gives rise to a new definition of S- and G-polynomials, which goes beyond divisibil-
ity relations of leading monomials. An implementation of Buchberger’s algorithm in the
computer algebra system SINGULAR [24] is possible with the SINGULAR:LETTERPLACE
subsystem [25] to compute Grobner bases with a degree-bound.

Kommutative Grobner Basen tiber Korpern K haben die starke Eigenschaft, einen ein-
deutigen Rest nach Reduktion zu erzeugen, was dquivalent dazu ist, iiber eine Grobner
Darstellung fiir Polynome zu verfiigen. Der Ubergang zur freien Algebra K(X) ist fiir das
Verstédndnis von K-algebren als Quotienten der Tensoralgebra unerlasslich. Des Weiteren
erbt die Grobner-Theorie Eigenschaften aus dem kommutativen Fall fiir endlich erzeugte
Ideale. Dies motiviert die Idee, nicht-kommutative Grobner-Basen fiir freie Polynomringe
tiber den ganzen Zahlen Z(X) einzufithren. Ziel ist es, eine Version des Buchberger Al-
gorithmus zu erhalten, der Kriterien verwendet, um Reduktionen zu Null vorauszusagen.
Nach einer Wiederholung von kommutativen Grobner Basen iiber Korpern, stellen wir
den allgemeinen Fall mit beliebigen Monoiden und kommutativen Koeffizientenringen mit
Eins vor. Dies liefert wichtige Erkenntnisse iiber die Struktur von Links-Syzygienmoduln
und rechtfertigt den Gebrauch von S-Polynomen. Um jedoch die Starke von Grobner
Basen iiber Koérpern zu erhalten, miissen neben S-Polynomen auch neue G-Polynome
eingefithrt werden, um Teilbarkeit von Koeffizienten zu gewéhrleisten. Deshalb analysiert
man zunachst den kommutativen Fall und erhélt Kriterien, die dem Produktkriterium
und dem Kettenkriterium dhneln. Die Fortsetzung mit nicht-kommutativen Polynomen
fithrt zu neuen Phanomenen, die es im Allgemeinen nicht moglich machen, endliche Grob-
ner Basen zu finden, und erfordern eine Anpassung der Kriterien. Das Fehlen eines all-
gemeinen Produktkriteriums fithrt zu einer neuen Definition von S- und G-Polynomen,
die iiber Teilbarkeitsrelationen von Leitmonomen hinausgeht. Eine Implementierung des
Buchberger Algorithmus mit Gradschranke in das Computeralgebra System SINGULAR
[24] ist mit dem Teilsystem SINGULAR:LETTERPLACE [25] moglich.
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1 Introduction

Grobner basis theory was introduced by Bruno Buchberger in 1965 for commutative poly-
nomial rings over fields and ever since then it has been used for effective computations.
Over the years the theory was extended to both commutative and non-commutative struc-
tures such as polynomial algebras or quantum groups and found applications in systems
theory, optimization, modelling and theoretical physics. It is one of the most famous and
worked-on techniques in computer algebra.

This Master thesis deals with polynomial rings over Euclidean domains such as the in-
tegers Z and principal ideal rings, represented by Z/mZ. Grobner bases over fields give
rise to canonical reductions and allow us to solve the ideal membership problem which is
related to fundamental questions of algebraic mathematics. These canonical reductions
give the polynomial ring the structure of a direct sum with respect to a given ideal, which
makes it possible to compute quotients and dimensions in multivariate polynomial rings.
We give a brief overview on Grobner basis over fields in the first chapter to point out
certain strengths which we desire to maintain over rings.

Several approaches were made for commutative polynomial rings over Euclidean domains,
including early publications from Buchberger, Kapur and Kandri-Rody in independent
and different ways.

In 1996 F. Leon Pritchard published a paper [7], in which he discussed the ideal member-
ship problem for non-commutative polynomials over principal ideal rings by using critical
sequences. His work was included in Teo Mora’s “Solving Polynomial Equation Systems,
4” [14] and refered to as Pritchard’s Procedure. An important result that we present is
the basic structure of left syzygy modules.

However, the strength of Grobner bases over fields is lost in Pritchards approach. In 2012
Daniel Lichtblau [6] extended the work of Buchberger [19] and Kandri-Rody, Kapur [18]
and presented criteria to determine, whether a pair of polynomials needs to be consid-
ered in Buchberger’s algorithm. Over fields, these are well known as product- and chain
criterion. Eder, Pfister, Popescu and Hofmann targeted the problems of coefficient swell
and modular techniques using factorizations for which they presented new algorithms in
[1], [2] and [3].

The transition from commutative to non-commutative polynomial rings is linked to prob-
lems that result from non-Noetherianity. Although an ideal may be finitely generated,
it usually does not have a finite Grobner basis, even if there is such a basis over fields.
Therefore, we adopt degree-bounded computations. Over fields, we only need to consider
non-trivial overlap relations between leading monomials, because of the product criterion.
This is in general not the case, when dealing with non-invertible leading coefficients. It
is still possible to have infinite Grobner bases over fields and we point out here, that
the product criterion does not exclude this phenomenon. The only implication that we
have is that the existence of a finite Grobner basis over a ring guarantees the existence
of such a basis over its quotient field. To develop an algorithm that computes such
a degree-bounded Grobner basis, it is essential to analyze the behaviour of polynomial
pairs and the atomic structure of the ring. This leads to a new definition of S-polynomials.
The SINGULAR:LETTERPLACE subsystem [25], of which the idea was introduced in [5]
by Levandovskyy and La Scala, is a tool to compute non-commutative Grobner bases



over fields with given commutative implementations in computer algebra systems. We
extend this to work over Euclidean rings and translate new product and chain criteria
to be applied with the SINGULAR:LETTERPLACE subsystem. These algorithms will be
implemented into the computer algebra system SINGULAR [24] by my supervisor Viktor
Levandovskyy and my colleague Karim Abou Zeid.

Simultaneously to Buchberger, Heisuke Hironaka introduced the term standard basis,
which is used today in a more general sense and especially when dealing with localiza-
tions of polynomial rings, by means of local or mixed orderings. We focus on global
monomial orderings on non-commutative rings, since the approach of Hironaka does not
seem to be broadly generalizable.



2 Revisit: Commutative Grobner bases over fields

In this chapter we will give a revision on Grobner bases for the well known setting over
fields. Let K be a field and P = K[X] = K[y, ..., z,] the commutative polynomial
ring over K with n indeterminates. Given an ideal of P by a generating set, we want
to decide, if an element of P is contained in the ideal, the so called ideal membership
problem. Finding a solution of this problem yields the answer to a whole collection of
further problems concerning equations over algebraically closed fields, dimension theory
or computation of generators for intersections of ideals. For n = 1 this is easy to achieve
via Euclidean division, since K[X] is a principal ideal domain. This is in general not true,
however, there is a property that ensures the solvability of the above problems and the
termination of algorithms. Of course we talk about the Noetherian property.

Lemma 2.1. (Hilbert’s basis theorem, cf. [20], Satz 1.8)
Let R be a commutative ring with 1. If R is Noetherian, then so is the commutative
polynomial ring with one indeterminate R|x].

Since fields are Noetherian and P = K[zy, ..., x,_1][x,], we see that P is Noetherian.
More precisely P is a Noetherian, factorial domain. Therefore, every ideal of P is gener-
ated by finitely many elements and every element has, up to units, a unique factorization.

Definition 2.2.

e An admissible ordering < on a commutative monoid (V, +, e) is an ordering,
which is agreeable with the monoid structure of /V in the sense that
1. < is reflexive, antisymmetric and transitive,
2. < is total,
3. w=<vforpu, ve Nimplies u+ A <v+ A\forall A e N and
4. every non-empty subset of NV has a smallest element and e, the unitary element

of N, is the smallest element of N, i.e. e < A for all A € N\ {e}.

e Let < be an admissible ordering on N and F C P \ {0} finite. A finite linear

combination
D e
feEF,veEN

with ¢;,, € K, z, € X, is called an admissible combination of F|, if the leading
monomials of z, f w.r.t. < and with ¢, s # 0 are pairwise distinct.

Example 2.3.
Consider N = Ny and let 1, v € Njj. The following are global monomial orderings.

e lexicographical ordering: We write p <Joy v, if there is 1 < k < n, such that
p1=Vi, ..oy f—1 = Vg1 and py < vg.
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o graded lexicographical ordering: We write p1 <gy)ex ¥, if |u| < |v| or |p| = |v| and

1t <]ex V- Hereby |p| := 37" | p; denotes the length of j.

Sometimes it is useful to extend a given ordering to compare polynomials in PP for
some p € N.

Lemma 2.4. (cf. [22], Lemma 5.1)
Let < be an admissible ordering on a monoid (N, +, e). This can be extended to a well
ordering on N x {1, ..., p} for any p € N by term-over-position

(1: 1) <gop v, J), if p<vor (p=vandi<j)

or position-over-term

(ks ©) Zpot (v, j), if e < jor (i=jand p < ).

Proof.

We need to show that <top Is a well ordering. Consider a descending chain (1, 1) Ztop
(2, i) Ztop - - - in N x {1, ..., p}. Then we obtain an ascending chain M; C M, C ...
of submodules of PY*P with My := (z*'e;,, ..., 2**¢;, ). But P is Noetherian and PP is
finitely generated, hence this chain becomes stationary at some k£ and for all [ > k there
exist a; € P with

k
e, = Z a;z'e;,
i=1

or equivalently

= Z a;xts.

ij=i;

Then there exists a A € N with p; = p; + XA > p; (< is admissible) for some j < k
with é; = i, Thus (tu, @) >top (W5, i) Ztop (ks i) Ztop (i, @), since j < k < 1,
but then (pg, ix) = (w, ;) for all [ > k, which means that the original chain becomes
stationary. ]

For i € Nj we set o/ 1= a#...ah. Let f = 3 r,a* € P\ {0} with r, € R. Then
we define deg(f) := max.{p € Nj | r, # 0} w.r.t. an admissible ordering on Nj.
Furthermore, for G C P let deg(G) := {deg(G) | f € G\{0}} C Nj. For anideal Z C P we
have deg(Z) = deg(Z)+Nj. If G is a generating set for Z, then deg(G) +Nj C deg(Z), but
“D” is not guaranteed and clearly linked to admissible combinations and the admissible
ordering. Assume for example that f € Z results from a combination of G, such that
the leading terms w.r.t. =< cancel each other out. Therefore, the combination is not
admissible.



Theorem 2.5. (cf. [20], Satz 2.4)

Let f € P and FF C P\ {0} finite. Then there is an admissible combination g of F' with
f=gordeg(h—g) ¢ deg(F)+Ng. We call h— g a remainder after division of 4 through
g.

Such a remainder is not uniquely determined. We are interested in finite sets with this
specific property.

Theorem 2.6. (cf. [20], Satz 2.5, Folgerung 2.6)
Let {0} # Z C P be an ideal, G C Z \ {0} a finite subset and < an admissible ordering
on Nf. The following are equivalent.

1. deg(Z) = deg(g) + Nj.
2. For f € 7, every remainder after division of f through G is zero.
3. For f € Z, one remainder after division of f through G is zero.

4. For pu € deg(G) + N2, we fix v € N} and g € G with = v + deg(g). Then with
g, = x”g we have

7= (—B Kg,.
pedeg(G)+Ng

If one of the equivalent conditions holds, then G is called a Grobner basis for Z and we
obtain a decomposition of the polynomial ring

P=Is @ Ka"=IoP/I
pedeg(g)+Ng

as a K-vectorspace. A Grobner basis can be constructed with Buchberger’s algorithm,
which we will present later for a more general setup.

Example 2.7.

e Integral linear programs in optimization: Find a solution x € Z? for

max cz, s.t. Ar =band x > 0 (component-wise)
€T

with A € NJ*? b € N{. For this problem let P = K[yy, ..., ya]. Then Az = b yields
g € N equations

ai 127 + ...+ Qi qlg = bz

or equivalently polynomial equations

@, 1%1+...+0a, ¢%q b;

Yi = yiZ



over P which can be combined as
g n g
@i, 1T1+... 10, qTq b;
[ =] ]u
i=1 i=1

After rearranging the factors we obtain

q q g
Wiy =] 27 =] [w
T ———— H ’ H
j e j
=:Zj
Let Z be the ideal of the polynomial ring P = K[z, ..., Zgy Y1, -+, Yg] Which is

generated by the elements z; — 47"/ ... yg”’ and determine a Grobner basis G of Z

w.r.t. an admissible ordering. One can show that the linear program has an optimal
solution z, if and only if the monomial 4" . . . ygg has 27" ... 279 as a remainder after
division through G.

Algebraic systems theory: Let D = Koy, ..., 0,] and A = KN a D-left module with
(oif)(try ooy tn) = f(t1, ..., ti+ 1, ..., t,). We say that an abstract linear system
B ={w € A Rw = 0} with R € D97 has a free variable w;, if the canonical
projection B — A, w — wj is surjective. Otherwise B is called autonomous. Since
A is an injective cogenerator over D, it follows that B is autonomous, if and only if
the associated system module M = D'*7/D*9R is torsion (cf. [22], Lemma 3.3).
This motivates the idea to measure the autonomy of a system with the dimension
of M, which is defined as the Krull-dimension of D/ann(M). Note that a Grobner
basis for ann(M) yields a decomposition of D/ann(M) as a K-vectorspace. We say
that B has autonomy degree at least m, if dim(M) < n —r. As a polynomial
ring over a field, the Krull-dimension of D is n. Hence r € {—1, ..., n} with r =n
corresponding to B =0, r = n — 1 corresponding to B being finite dimensional as a
K-space, and r = 0 corresponding to B simply being autonomous (cf. [22], Theorem
5.3).

To determine the dimension we extend an admissible ordering on Nfj to an ordering
on NJ x {1, ..., p}. Then for any element m € D'*? we define the degree as usual.

Let T := Ny x {1, ..., p} \ deg(D"*PR) and T; := {v € NJ : (v, j) € I'}. We define
dI) =max{0<k<n|[I1<j<...<jr<n, 1<ji<p: (e, ..., e )n L}

One can show that d(I') corresponds to the dimension of B (cf. [22], ch. 5.2).

10



3 General setup

Before we start with Grobner bases for ideals in non-commutative polynomial rings, we
have to fix some notations. The set Njj works fine for the definition of a term ordering on
commutative polynomials, but when dealing with non-commutative structures or monoid
extensions, a more general setup is required. In this chapter we will give the necessary
definitions.

Let R be a commutative, unital ring and (X, -, 1) a monoid. It is convenient to denote
the unitary elements of R and of X both by 1. A global monomial ordering < on X
is a well ordering which is agreeable with the monoid structure in the sense that

1. < is reflexive, antisymmetric and transitive,

2. < is total,

3. p<vforp, ve X implies \; - 1 - Ao < Ay -v- Ay for all Ay, Ay € X and

4. every non-empty subset of X has a smallest element and 1 is the smallest element
of X,ie. 1< Aforall A € X.

Let P = R(X) be the monoid ring of X over R. This is the set of all maps ¢ : X —
R with finite support and can be identified by the set of formal sums . _. ¢,r with
¢ = ¢(x) = 0 for all, but finitely many x € X. Clearly this is a ring with addition
(¢ + V) = ¢ + ¥, and multiplication (¢ - ¥), = Zyzzx ¢y¥.. Furthermore, P is the
finitely presented commutative polynomial ring over R, if and only if X is commutative
and based on (i.e. generated by) a finite alphabet. If X is commutative, then we write
P =R[X].

For ' ={fi, ..., fm} € P with |F| = m we consider the left R-module homomorphism
7 P™m — P which is defined by e; — f;, where ¢; is the i-th standard basis vector of the
free left R-module P**™. An element a € PY*™ with @ := w(a) = 0, i.e. Y, a;f; =0, is
called a left syzygy of F'. Clearly the set of all left syzygies of F' is the kernel of . Note,
that it is not necessary to write left R-module, since the definition of the multiplication
on P indicates that elements of R and P commute with each other. However, P is non-
commutative in general, hence we must write left (and analogously right) syzygy. The set
of all left syzygies of F' is denoted by Syz(F).

With respect to a global monomial ordering there exist unique elements r € R \ {0} and
t € X for any f € P\ {0} , such that f = rt+l.o.t. (lower order terms) or equivalently

f:Zfzoriti where tg < t; < ... <ty=tand ry =7 #0. If X = (21, ..., x,) is based
on a finite alphabet, we can find v* € N? for each t;, such that t; = ¥ = xlfi Copn

and can write f = Zf:o rz” or simply f = >, v’ Then LT(f) = rez”” is called the
leading term, LM(f) = 2" is called the leading monomial, LC(f) = r; is called the
leading coefficient and tail(f) = f—LT(f) is called the tail of f with respect to <. The
degree of f is defined as deg(f) = max{|v’| =v{+...+ v | 0 <i < k} and the ecart of
f as ecart(f) = deg(f)—deg(LM(f)). For completeness we set ecart(0) = deg(0) = —oc.
The leading ideal or ideal of leading terms of F' C P is the two sided ideal L(F')
generated by all leading terms of the non-zero elements of F'.

11



Definition 3.1.
Let f € P and G C P be a finite and ordered subset. A weak normal form of f w.r.t.
Gisamap (f, G) — NF(f, G) € P with

1. NF(0, G) = 0,
2. NF(f, G) # 0 implies LT(NF(f, G)) ¢ L(G) and
3. f—= NF(f, G) € (9).

Definition 3.2.
Let X be a free monoid on a finite alphabet {z1, ..., z,,} that is preordered by = < xs <
o< Ty Lot =y cwy,, Yy = x0Ty,

e We say that x is smaller than y in the left lexicographical ordering, denoted by

T <]jex ¥, if either there exists 1 < m < min{k, I} with z;, = y;,, ..., 74, , = T4,
and x; < y; , orif otherwise x divides y from the left, i.e. there exists z € X, such
that y = xz.

Note, that this is not a monomial ordering in the non-commutative case, because
it is not agreeable with the operation of the monoid. If x > y, then by the left
lexicographical ordering we have x >0 yz. But, if <j,, would be monomial,
then 1 <jo ¥ would imply x <)oy ¥, a contradiction.

e We say that = is smaller than y in the graded left lexicographical ordering or
degree left lexicographical ordering, denoted by z < orllex ¥» if || =k <=yl
or k=1 and = <jjoy y- This is indeed a global monomial ordering.

Analogously one can define the right and graded/degree right lexicographical ordering.
Example 3.3.

o Let P =W, :=R{t, 9|0t = t0 + 1) the first Weyl algebra. Then 9t* = tdt + t and
thus (9, —t) is a left syzygy of {t?, dt + 1}. However, t?0 — (0t + 1)t = —3t # 0.
Therefore, it is not a right syzygy.

o Let f = z+x125 € Z[xy, 25]. Then with z; > x5 in the left lexicographical ordering
we have deg(f) = 4, deg(LM(f)) = 2 and ecart(f) = 2.

12



4 Non-commutative Grobner bases and syzygies

In this chapter we will introduce Grobner basis theory for non-commutative polynomial
rings with commutative, unital coefficient rings. The results are mostly based on the
work of Pritchard [7]. After a characterization for Grébner bases, we will present some
statements for ring extensions and monomial extensions. Furthermore, we address the
ideal membership problem with the result, that the question “f € Z?7” can only be
determined in finitely many steps, if and only if f is actually contained in the ideal Z.
This is done with the tool of critical sequences. We will see that having Grobner basis, that
remains a Grobner basis after monoid extension, is an intrinsic property and independent
of the choice of the basis. This leads to a generalized version of the PBW Theorem for
Lie algebras.

Let R be a commutative, unital ring and < a global monomial ordering on a monoid X.
We denote the polynomial ring over R by P = R(X).

Definition 4.1.
Let G C P and Z = (G) a two-sided ideal of P. Then G is called Grobner basis for Z,
if L(Z) = L(G).

In the non-commutative case we have to distinguish between multiplying monomials from
the left and from the right to generate the two-sided ideal 1.(G). Let ~ be the equivalence
relation on P @z POPP that is given by

T1RUYL ~ Ty RYs < V€ X xity; = xotys

for z1, x9, Y1, yo € X. We denote (P @z PPP)/ ~ by P¢ and call it the enveloping
polynomial ring.

Remark 4.2.

o P*:=P ®z POPP is a unital ring with multiplication A\;(z1 @ y1) - Aa(22 @ yo) =
Mg (19 @ y1y2) for A; € R and x;, y; € X. Moreover, P is a left P*-module via
(x ® y)t = aty. Therefore, ideals of P can be identified as left P*-submodules of
P. However, P is not a left P*-algebra, if X is non-commutative, because then
((x @ Y)t1)ty = xtiyts # xtitey = (x @ y)(t1ts) if t9 and y do not commute. Thus
the action of P* on P is not associative.

e Similarly P is a left P°-submodule and we can identify ideals of P as left P*-
submodules of P.

o ForgePlet ¢y : P* =P, fr> fgand T =[], p ker(dy). Then P° = P*/T.

ForZ = (G) and f € 7 we can find g; € G, coefficients \;; € R and monomials a;;, b;; € X,
such that

ki
Z ’L]alj.g’b i

||
1 Mg
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for some k; € N. With the above notation of the enveloping polynomial ring this translates
to having polynomials p; € P¢ with

ki
pi =Y Aijlai; @ byj)

=1

and f = >", pigi;. The degree, leading coefficient, leading monomial and leading term of
p; € P¢ is defined via the polynomial p; - 1 = 251:1 Aijaijbi; € P.

It should be noted that the k; are not bounded. Since we are interested in two-sided
ideals, we need two-sided syzygies. The notation for a syzygy, which has entries inP¢,
comes in handy, but should not be confounded with strict left syzygies with entries in P.
Since P is a left P°-module, we use the term left syzygy.

Now let f = Zf:o r;t; be an arbitrary element of P with coefficients r; € R and monomials
t;. We say that f is in simplified form, if all coefficients r; are non-zero and the t; are
pairwise distinct. Analogously we say that an element of P¢ is in simplified form.

Definition 4.3.
Let G={g1, .-, gm} CP\ {0} and f € P\ {0}.

e We say that f has a Grobner representation w.r.t. G, if f = i p;g; for some
i=1
pi € P\ {0} and LM(f) > LM(p; f;) for all 1 <1i <m.

e We say that f reduces to some h € P w.r.t. G, if h = 0 or LM(f) > LM(h) and
f — h has a Grobner representation w.r.t. G.

o Let a € (P9)'™™ be a left syzygy of G = {g1, ..., gm} C P, ie. D" g = 0.
By Syz(G) we denote the set of all left syzygies of G. Assume that for a € Syz(G)
with «o; = 251:1 7“5-7‘}, 7’; € X¢, there exist pé- such that T; = pét for some fixed
t € X. Then we call « homogeneous of degree t. An X-grading of Syz(G) is
given by @, ¢Syz(G) where Syz,(G) consists of all homogeneous left syzygies of G
with degree t. Now assume that the left P-module Syz(G) has a P¢-basis H. We
say that H is homogeneous of degree t if every element of H is homogeneous of

degree t. Note that Syz(G) is not finitely generated in general.

Remark 4.4.

Under the assumptions of Definition 4.3, reduction is closed under transitivity. Let f
reduce to h and let h reduce to h, both w.r.t. G. Then LM(f) > LM(h) > LM(h) and
there exist p;, p; € P¢ such that f —h =3, ; pig; with LM(f — h) = max{LM(p;g;) }ier.
Moreover, we have h — h = YjesPig; with LM(h — h) = max{LM(p;g;)};es. Especially

f=h=f-h+h=h=>pgi+ > Digi= D, Do

el jed keluJ
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with pr = pi + Pr, such that p, = 0, if & ¢ I, and pp = 0, if & ¢ J. This is a Grobner
representation of f — h w.r.t. G, because

max{LM((px + Pr)gx) }r < max{LM(p;g;), LM(p;9;)}i, s
< max{LM(f — h), LM(h — )}
= LM(f — h)
= LM(f),

because LM(f) > LM(h). Therefore, we have equality and thus f reduces to h w.r.t. G.

The following is a characterization of Grobner bases and similar to the commutative field
case from chapter 2.

Theorem 4.5. (cf. [7], Theorem 1)

Let G = {g1, ..., gmn} € P\ {0}, T = (G) and M := {LM(g;)};. Let H = {H; =
(hi, ..., hi,)}; be a homogeneous basis for Syz(M) of degree t. The following are equiv-
alent.

1. G is a Grobner basis for 7.

2. Every f € 7\ {0} has a Grobner representation w.r.t. G.

3. Every polynomial ), h{ g; has a Grobner representation w.r.t. G.
4. Every f € Z\ {0} reduces to zero w.r.t. G.

5. Every polynomial >, h{ g; reduces to zero w.r.t. G

Proof.

For “1. = 2.”let f € Z. Since G is a Grobner basis for Z, we can write LT(f) = >, p:LT(¢;)
for some p; € P¢ and we may assume without loss of generality that LM(p;f;) = LM(f),
if p; # 0. Then f' := f — > p;g; satisfies LM(f’) < LM(f) and either has a Grobner
representation or we repeat the procedure with f” := f'—> . h!f; for some p} € P°. Since
< is a well ordering, this process terminates and we obtain a Grobner representation
f=2upi+0,+p/+..)g of fwrt. G.

The implication “2. = 3.” is trivial.

We prove “3. = 1.” by showing that LT(f) € L(G) for any f € Z. Let f = > pig
for some p; € P¢ and let ¢ := max{LM(p;g;)}. In the case where LM(f) = t we have
LT(f) € L(G). Assume now that LM(f) < ¢ and let p; = Y, rj7; be in simplified form
with 7, € R and 7/ € X¢. We define

Q= Z TLT-

i LM (p;)=t

Then by the assumption LM(f) < t we have o = [y, ..., ay] € Syz(M). Since H is
a basis of Syz(M), we can write o = >}, s;H; with s; € P°. Let 3}, N/ g; be a Grobner
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representation of Y. hlg; w.r.t. G with LM(Mg;) < LM(g;). Then
f= Zpigi
= Zpigi + Z Qigi — Z Qi

= Zpigi - Z Q;g; + Z Sj (Z higz)
i i j i

= Zpigi — Q;g; + (Z 53‘)\{) gi
i J

= 2 (pi — o+ Zsj/\g) 9i
? J

g

./
)

is another representation of f with ¢’ := max{LM(p.g;)} < t. Since < is a global monomial
ordering, this procedure terminates, when we arrive at LM(f) and we obtain a Grobner
representation of f w.r.t. G. Especially we have LT(f) € L(G) and, therefore, G is a
Grobner basis for Z.

The implication “4. = 5.7 is trivial.

To show “5. = 3.” let h = ), h{ g; reduce to zero, which is a transitive process. Then for
ho := h there exists hqy, such that LM(h;) < LM(ho) and hy — h; has a strong Grobner

representation. Iteratively we get a finite chain of reductions hg — hy, hy — ho, ..., hy —
hgi1, hir1 = 0 and thus Zf;ol h; — h;y1 is a Grobner representation of h.
Finally the proof of “1. = 4.” is analogous to “1. = 2.”. O

The polynomials »", h{ g; in the above theorem are sometimes called S-polynomials,
since the leading terms are eliminated due to the syzygy-property. We will use the term

S-polynomial from chapter 5 on in a more specific sense and not adopt it here yet.

Proposition 4.6. (cf. [9], Theorem 3.6)
Let § be a ring with a ring homomorphism ¢ : R —+ §. We extend ¢ to P. Then the
following statements hold.

1. For any ideal Z C P we have Ls((¢(Z))) 2 (¢(Lr(1))).

2. S is a flat R-module, if and only if for any sequence {a;}; € R and {b;}; € S of
length ¢, such that ). b;¢(a;) = 0, we can find ¢;; € R and d; € S with ). ¢;ja;, =0
and Zj dj¢<cij) = bl

Proof.

For 1. note that (¢(Lr(I))) is generated by ¢(LT(f)) for f € Z and either LT(f) maps
to ze10 under ¢ (if GLC(F)) = 0) or S(LT(F)) = LT(6(/)) € Ls((6(T)))

In the case of 2. we will show the statement for arbitrary R-modules M instead of S,
starting with M being flat. Let > . a;m; = 0 for a; € R and m; € M with 1 <¢ < /. The
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matrix R = [ay, ..., a7 € R induces maps ¢ : R* — R and ¢ : M* — M such
that ¥ = ¥ ® idys. Now we consider the exact sequence

0— ker(v) 5 RESB R
and apply the functor e @ M which yields an exact sequence

0 — ker(v) @ M coida MEEM M,

since M is flat. As ¢p(mq, ..., my) = Rlmyq, ..., mg]tr = 0 we have (my, ..., my) €
ker(¢p) = im(: ® idy) and thus there exist v; = (cij, ..., cj) € ker(¢)) € RY and
my € M with (mq, ..., mg) = ¢ @idm(D; 7 ® m;). Replacing m; € M with b; € S,
respectively m; € M with d; € S, and a;m; with b;¢(a;), respectively c;;m; with d;¢(c;;),
yields the conclusion.

For the converse we will use a variation of Baer’s criterion (cf. [21], Theorem 5.26). This
is usually applied to check for injective modules, but can be modified in order to be a
criterion for flatness. We claim that M is a flat R-module, if and only if for every finitely
generated ideal Z C R the canonical map Z ®x M — R ®z M is injective and especially
Z @r M = ZIM. The proof is given in [10], Theorem 7.7.

Now let Z = (aq, ..., ag), which is a finitely generated ideal of R. Then any element
of Z @z M can be written as Y, a; ® m;. Let >, a;m; = 0 € M. By our assumption
there exist ¢;; € R and m; € M with > ;a;c;; = 0 and »,;¢;m; = m;. Therefore,
we have Y. a; ® m; = Zij a; ® cijm; = Zj(zz a;c;;) ® m; = 0, i.e. the canonical map
ITRr M =R r M =ZRM = M is injective. By Baer’s criterion, M is flat and this
of course also holds, if we replace M with S. O

This proposition leads to the following characterization.

Theorem 4.7.
Let S be a ring with a ring homomorphism ¢ : R — §. Let Z be an ideal of P. Then
Ls({(¢(Z))) = (¢(Lg(1))), if and only if S is a flat R-algebra.

Proof.
Let § be a flat R-algebra. The inclusion “2” follows from Proposition 4.6. To show that

Ls({(¢(Z))) € (¢(Lgr(1))) let ra” € Ls({(¢(Z))). Then we can write ra” = LT(>., b;¢(f))
for some b; € S[x]¢ and f; € Z. Since the f; are not fixed, but elements of an ideal, we can

assume without loss of generality that b; € S. Let x* = max{LM(f;)};,. We choose an

expression of rz¥ where x# is minimal. Suppose that x# > x¥ and let a; be the coefficient
of z# in f;. Then », bi¢(a;) = 0 and by Proposition 4.6 there exist ¢;; € R and d; € S
with ). ¢;;a; = 0 and Zj d;jp(cij) = b;. Then f; =Y c;;fi € Z. These satisfy

22di0(f) = Y diole)df:) = Y bio(fi)

and, therefore, LT(};; d;¢(f;)) = ra¥, but in this expression we have LM(f;) < a*,
because ), ¢;;a; = 0 which contradicts the minimality of z#. We supposed that 2™u > z”
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and lead this to a contradiction. Therefore, ;1 = v and for the coefficients a; of x#* = x”
in the f; we have ), b;¢(a;) = r. Especially ra” € (¢(Lr(1))).

Now suppose that S is not flat. Then by Proposition 4.6 there exist a; € R and b; € S
with 3 bi¢(a;) = 0 and no expression >, d;¢(ci;) = b; when simultaneously >, ¢;ja; =0
should hold, i.e. b; ¢ (im(¢)). We choose the length [ of the sequences (i.e. 1 <i <)
to be minimal. Let f; = a;z'y + 2/~ € R[z, y] with x > y and Z = (fy, ..., fi). Then
S biod(fi) = D bid(a;) + bix' Tyt = > bix'~lyt. Note that >, c;ja; = 0 is equivalent to
Suciifi = Y cija;i + cir! Tyt = Y ci;a' 'yt The leading coefficient of this expression
is given by ¢;; and by our assumption b; is not contained in the ideal ({cy;};) which is
generated by the coefficients of ¢(Lz(Z)). Especially LT(b1¢(f1)) ¢ (¢(Lgr(Z))) which
completes the proof. O

Corollary 4.8.
Let Z be an ideal of P, S C R a multiplicatively closed subset and S = S™'R, the
localization of R on S with canonical ring homomorphism ¢ : R — S§. Then Ls(¢(Z)) =

UL (Z)).

Proof.

We will show that the functor S~ 'e is exact. Let
A S A, Y A

be an exact sequence of left R-modules. Then S~ '¢po S 1) = S (po1)) = 0. Let on the
other hand S‘lw(g) =0 for a € Ay and s € S. Then we can find § € S with §¢(a) = 0,
s

ie. sa € ker(¢y)) = im(¢). Let ¢(a) = Sa. Then we have @_ s o) = Silqﬁ(i)

S Ss Ss 5
thus ker(S~'¢) = im(S~'¢) and

§14, S0 g1y, ST g1y,

is an exact sequence.
We showed that S~'e is exact. On the other hand S~'e is functorially isomorphic to
SR ®r @ = S @ e. Using Theorem 4.7 completes the proof. O

Let Y O X be a monoid extension of F' and let <x, <y be global monomial orders on X,
Y respectively, such that x <x & implies z <y 7 for all x, £ € X. We call Y an order
preserving extension of X.

Proposition 4.9.
Let Y O X be an order preserving extension of commutative monoids on finite alphabets,
ie. P =Rz, ...,z and R[Y] = Rlz1, ..., Tp, Y1, - .., Yn). Let G C P and 7 =
(G) C P, such that G is a Grobner basis for Z. Then G is also a Grobner basis for
J =(G) CR[Y].
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Proof. Let f € J. Then there exist monomials ¢; € Y and polynomials f; € Z such that
g = >, tifi;. Furthermore, let LT(g) = rtx with r € R, t € Y and z € X. Since the f;
are in Z, we can choose the represenation of f such that there is an index ¢ with ¢; = ¢
and thus rtz = LT(3, t:f;) = LT(X, _, t:fi) = tLT(Y, _, fi). Hence f =3,  h €I

satisfies LT (f) = tLT(f) € Ly(G). Therefore, G is a Grobner basis for J. O

A similar statement exists for non-commutative monoids over fields and is proven in [15].
Let R = K be a field and Y O X be an order preserving extension. Let G C K(X) and
Z = (G) C K(X) such that G is a Grébner basis for Z. Then G is also a Grobner basis
for 7 = (G) CK(Y).

Theorem 4.10.

Let Y O X be an order preserving extension. Let G C P such that G is a Grobner basis
for both Z = (G) C P and J = (G) C R(Y). Then every Grobner basis for Z is also a
Grobner basis for J.

Proof.

Let G be another Grobner basis for Z and f € J. Then LT(f) € L(G) and, therefore,
there exist p; € R(Y)® and ¢; € G such that LT(f) = >, p:LT(g;). Moreover, since
gi € G C T, we have LT(g;) € L(G) and hence there exist hi € P and g; € G with
LT(g:) = >, hLT(g;). Then

LT(f) = sz-LT(gz-) = pihiLT(g;) € L(G)

V]

and thus G is a Grobner basis for 7. O]

Definition 4.11.

Let G = {g1, g2, - ..} C P be a countable subset and let t; < t5 < ... be an ascending
sequence in X such that every t € X is bounded by some ;. We call this a partition of
X. An ascending sequence B; C By C ... C P of finite sets B; = {b} } is called critical
sequence for 7 = (G), if

1. g; € B; for all i € N and

2. there is a homogeneous basis H of Syz({LT(b},) },:), such that for each homogeneous
H; = >, viex € H of degree at most t; for some i, we have that ' ~ib; either
reduces to some element of B;,; or to zero.

Lemma 4.12.
Let t € X \ {1}. Then t < > < #3 < ... is an ascending sequence and every { € X is
bounded by some #, thus we have a partition of X.
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Proof.

Since < is a global monomial order, we have e < ¢t and thus ¢’ < t**! for all i € N. Fix
somet € X andlet T:={r € X |z <t}and T; := {z € X | # < t'}. These are finite
sets. Since < is total, we have for every ¢ € N either T" C T; or T; C T'. Suppose that
tt < t for every i € N. Then |T;| < |T|. But by construction, |Ty| < |Ty| < ... is a strictly
increasing sequence in N. Hence we have a contradiction and ¢ is contained in some 7},

i.e. is bounded by t'. O

Theorem 4.13.
Let B; € By C ... C P be a critical sequence for Z as in Definition 4.11. Then there
exists N € N such that every f € Z has a Grobner representation w.r.t. By.

Proof.
Let f € Z with LM(f) = ¢t. Then there exists n € N such that f € (fi, ..., fa). For
m > n we consider the, therefore, non-empty sets

T, = {max{IM(hy'b") b | By € P, 0)' € Byt f = > hi'by}.
k

Since < is a global monomial ordering, we know that 7,, contains a unique minimal
element, say t,,. We claim that t,, > ¢, if t,, # t. To see this, let p;, € P°¢ with
f=2,pb" and max{LM(p;b/")}; = t,,. Now we define « as in the proof of Theorem 4.5.
Let p; = Y, r}.7; be in simplified form Wlth ri € R and 75 € X¢. We set

;= Z riTh.
i LM(om)=tm
and a = [og, ag, ...]. Then max{LM((p; — a;)bi")}; < t,,. Let H = {H;}, be a ho-
mogeneous basis for Syz(LT(b*)) which exists by the assumption that we have a critical

sequence. Note that o € Syz(LT(b}")) is homogeneous of degree t¢,,. Therefore, we may
write a = )| ; siH; with s; € P¢. For the rest of the proof we have to set simplicity aside

and fix card(B;) = N; € N. Then a = [ay, ..., ay,,] and with the basis H we have
N Non
Z a; bt = Z 55 (Z vibzn) .
i=1 j —

*

We have to consider two cases. If the expression x in brackets reduces to zero w.r.t. B,
then there exist X} € P such that max{LM(Mb™)} ¥ is equal to the leading monomial
of x and « equals ZN’" Mb™ . 1f on the other hand * reduces to some b"*t € B, w.r.t.
B,, then there exist A € P¢ such that maX{Ll\/I(/\‘7 bm) " is smaller than or equal to the
leading monomial of x and * equals bt 4 ZNm N b Smce B,, C B,,11, we obtain in
both cases a representation Z e\ ber1 for x+ with X} € P¢. Then

Ny, N, m41
Db =>1s; (Z y,zb}f) Z ( j Aﬂbm“)
=1 J k=1

J

20



where each summand % has leading monomial strictly smaller than ¢,,. Note that above
we already had max{LM((p; — a;)b")}; < t,, and altogether

Nm, N,
f= Z(pz — ;)b + Z ;b
i=1

=1

N Nm41 '
=Y (pi — )b + > s ( > Agb;”“)
i=1 j i=1
(Z sjAg) b,
J

Again we use B,, C B,,.1 to write this as one sum f = Zfi”{“ ﬁibzm“ with £, <

max{LM(p;b" ) }¥m+t < t,,. Therefore, f has a Grobner representation w.r.t By :
Bm+1~ ]

Nm m—+1

=D (i — b + )

=1

An obvious consequence is, that we can obtain a Grobner basis using critical sequences.

Remark 4.14.

Let M be a finite set of terms, for example leading terms of a generating set that we are
interested in. Then for ¢ € X we can construct a basis H* for Syz,(M) as follows. Let
M ={rity, ..., rpty} with r; € R and ¢; € X. Furthermore, for 1 <1i < m let

{p € P monomial | pt; = t} = {p}},

which is finite and non-empty if and only if ¢; divides t. We set n; := card({p}},;) € N
and n® = Zle n; for 1 < s < m. For every 1 < k < n™ we choose a 1~§ s < m such
that n*~! < k < n®*. We set ¢, := r,. Then we can find a generating set H for

{017 cry Cnm}J_ - {U c R(nm) | ZCkUk = 0}
k

Let (hY, ..., hl.) € H. For 1 < k < n™ we choose 1 < s < m such that n®~! < k < n%
and set Ay := k —n*~!'. We define H; := Y}, hip}* and H' = | J,{H;}. Then H' is a
homogeneous basis of Syz,(M).

This can be used to compute a critical sequence of an ideal Z C P, if we have a partition
t; <ty <...of X (cf. [7], Lemma 12 for a proof).

Finally we can solve the ideal membership problem f € 7 as follows. For t € X \ {e} we
take the partition t < t? < ... of X and compute the critical sequence B; C B, C ... as
above. Let fo = f and for n € N let f,, be a normal form of f, ; w.r.t. B,. Then f € 7
if and only if we have f,, = 0 for some n’ € N.

From now on let R be a principal ideal domain.

Remark 4.15.
There is a procedure to compute a basis for Syz(M) with M = {LT(g;)}; over principal
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ideal rings. For every g; € G let LC(g;) = r; and LM(g;) = t;. Since R is a principal ideal
ring, we can find a greatest common divisor and a least common multiple of two leading
coefficients, based on the Euclidean algorithm. Therefore, let

T,
Cij ‘= 7],
ged(r, ;)

thus lem(r;, ;) = ¢;;mi = cj;r;. Moreover, let x1, 2, Y1, Y2 € X such that at least one of
the following conditions holds

o=y =1
® 1=y =1
e =1y =1
e 1=y =1

and there exists no z € X such that exactly one of the following holds for some fixed
1<i<j<m

o 11 = xot;jx and Yo = xt;y;
o 1y = x1t;x and y; = at;ys
We define

cij(z1 ® Y1), k=1
Zij i ={a€Syz(M) |VI<k<m: ap=1—cji(za®@y2), k=

0, else
and for an arbitrary, but fixed z € X, we define

Cz‘j(€®l‘tj), k? :Z

0, else
Then

H:={J(Z;uYy)
i,J
is a Pc-basis for Syz(M). This is an important fact and we will use it in chapter 7. It
tells us that we only need to focus on elements of the syzygy module, that have exactly

two non-zero components. Thus it suffices for computations to restrict to syzygies for two
elements which we call a pair.
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Theorem 4.16.
Let G ={g1, ..., gm} € P\ {0}, Z = (G) and H a homogeneous basis of Syz({LM(g;)}:)

such that for all H; = (hi, ..., hJ)) € H we have that 37" hlg; has a Grobner represen-
tation w.r.t. G. Then G is a Grobner basis for 7.
Proof.

Let f € 7 and assume that there exists no Grobner representation of f w.r.t. G. We
write f = ) p;g; for some p; € P such that ¢ := max{LM(p;g;)}; is minimal amongst
all such representations of f. Since there is no Grobner representation w.r.t. G, we have
t > LM(f). The next step is already well known from the proofs of the previous Theorems
4.5 and 4.13. Let p; = Y., ri7i be in simplified form with r}, € R and 7}, € X°. We set

Q; = Z T
kIT]iLM(gi):t
and obtain a := [ay, ..., as,] € Syz({LM(g;)};). Using the basis H we can express o
as o = ;s H; with s; € P¢ and , higi = > ; A gi a Grébner representation such that

max{LM(Mg;)}; < LM(h!) (here we use that H; is homogeneous, thus LM(h]) does not
depend on ). Now

oo (S} 2o () -5 (2] - 5 (5o0)s

and thus

7 7

f= Zpigi = Z(pz +a; — a;)gi = Z (pz‘ —Q; + Z thg) 9i
i J

with max{LM(p.g;)}; < t, a contradiction to our assumption that ¢ is minimal. Hence f
has a Grobner representation w.r.t. G and G is a Grobner basis for Z. O

To give another criteria for Grobner basis we extend the concept of reduction: We say that
f has a monomial Grobner representation w.rt. G = {g1, ..., g} if f =2, hig;
is a Grobner representation w.r.t. G with h; € P° such that the h; are either zero or
monomials with LM(h;g;) = LM(f). We say that f monomially reduces to h w.r.t.
G if LM(h) < LM(f) and f — h has a monomial Grébner representation w.r.t. G. This
allows us to give a criteria for monomial extensions.

Theorem 4.17.

Let Y O X be an order preserving extension of free monoids on finite alphabets, i.e. P =
R{xy, ..., xp) and RY) = R{x1, ..., Tn, Yo, Y1, - -, Yn). For G ={g1, ..., gm} C P
let J = (G) C R(Y). Then G is a Grobner basis for 7, if and only if every polynomial
> ¢;g; monomially reduces to zero w.r.t. G where a = [aq, ..., o] is an element of

(1 @wyoty), k=i
Z::U Zi;U{a €8Syz(M) |[VI<E<m: =1 —c;i(tiyo®1), k=j}

s 0, else
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for M, c;j, ti, Z;; as in Remark 4.15 and 1 the unitary element of Y.

Proof.
Let G be a Grobner basis for J. We will show that for any homogeneous syzygy o with
ciijle®@yot;), k=i
Qg = —Cji<tiy() X 6), k= 7

0, else

for 1 < k < m we can find p; € P° such that Y, a;0; = >, pig; and max{LM(p;g;)} <

tiyot;. Since G is a Grobner basis, we know that every polynomial hy = c¢;;gyot; —
c;itiYog; monomially reduces to zero w.r.t. G thus the is a sequence of polynomials
ho, hi, ..., hy = 0 obtained from each other by reduction and with Grobner representa-

tions h;—1 — h; = )] i )\égj such that )\3. is a term in R(Y)¢. Observe that hy consists of
terms r7yo7e with 7 € R and |11, 2] € X2\ {[t;, t;]} such that 7y < ¢, 7o < t;. We
claim that this is the case for every term occurring in the h; and in the Groébner repre-
sentation of h;_; — h;. Let the claim hold for i — 1 and let LM(h;_1) = T1yoT2. Since the
gi are polynomials in X, there are z, 2’ € X with X! = ¢(z ® 2yo7,) or A} = ¢(T1yor @ ')
for some coefficient ¢ € R. We assume that the first case holds and write g; = Y, vzl
with r/ € R and 2] € X. Then

iy — L 2Vl — N ppd ol
Nigj = Z c(x @ x'yoTo)riz] = Z cr]xa] 'y Te
! I

and

j - 7:1, l - 1
rxy N
< T1, ) > 2
which proves the claim for i. Set A; := }_; Aig;. Then 2. AG; = cijgiyot; — cjitiYog; =
2. @95 with max{LM(p;g;)} < t;yot; which was to show. Hence we find another syzygy
of degree smaller than a and iteratively @ must monomially reduce to zero w.r.t. G.
On the other hand the set Z contains a basis for Syz(M) and thus if every element reduces
to zero then G is a Grobner basis for J. ]

Remark 4.18. (fundamental theorem for finitely generated modules)
Let M be a finitely generated R-module. Then there exist a unique n € N and up to
units unique rq, ..., 1, € R with vy | ... | r, and

M=R/MR®...BR/rR.

For r; # 0 we get parts of the torsion submodule, while r; = 0 corresponds to free
submodules. Now let M = L be a Lie algebra over R with Lie bracket [o, ] and freely
generated by ey, ..., ey, N > n, such that £L = Re; & ... & Ren and ann(e;) = (r;)
for 1 < i < n (especially there are free resolutions of £ of length N — n). Then there
exist coefficients ¢;;, € R with [e;, e;] = Y, ¢ijrer and if we have ¢, € R with the same
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property then ¢;jp — ¢, € (ry) for 1 <k <n and ¢, = G, forn+1 <k < N.
Let X be a free monoid on a finite alphabet with N letters, i.e. P = R{xy, ..., zy). We
define

g = {g”LJ = l‘l‘l’j — Ijl’i — Z Cijkxk}i,j and 7‘[ = {hz = Tzl’z}z
k

Then the universal enveloping algebra

LOLOL)BLRILOL) S ...
{fveow—-—wev—I|v,w |v,weL})

is isomorphic to P/(G U H).

Lemma 4.19.

Let X be a free monoid on a finite alphabet and £ a finitely generated Lie algebra
over R with Lie bracket [e, o]. Our global monomial ordering shall be the graded left
lexicographical one with xn > ... > xy. Let U be the universal enveloping algebra over
L. Then G U H, with G, H as in Remark 4.18, is a Grobner basis for (G U #H) and for
every free order preserving extension Y O X we have that G UH is a Grobner basis for
(GUH) CRY).

Proof.

We will show that every S-polynomial h resulting from syzygies of elements of P U H
monomially reduces to zero w.r.t. GU H. First of all let h result trivially from elements
of G, thus for 7 > j, k > [ and x € X we have

h =xv;xgm — gijra,T

=T;T;xT (.Z'kl'l — 1T — Z Cklsxs>

S

— (xixj — ;T — ch‘jsl's) TR

S

= — T;T;XX | T — Z CklsTiXjT T
S

+ xrixrRr; + Z CijsTsTLLRXY
S

+ (gijraiey, — TT01) — (9iTT1T) — L5039k

= — TiTjTX|Tf — Z CklsTiXjITTs
s

+ T;1;007 + Z CijsTsTT Ty
S
+ TiTjXT 1T — TjT; XX 1T — Z CijsTsTX Tk
S

— xjxitrpr; + e ey + Z CklsT;T;TLg
S

- (gz‘jﬂifczxk - xjxigkl)'
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We define

U
h' = —Z CklsT;TjTTs + Z CijssTXLT] — Z CijsUsTX T} + Z CklsTjTiTLs.

S S S S

to obtain h = h' — (g;;xx2) — ;295 ). Hence h reduces to b’ and the leading terms of A’
do not cancel each other out. Then A’ monomially reduces to

"
"= — Z ClsCijs' TsTT s Z Cils' Cijsls! LXs = 0.

s, s, s’

w.r.t. ‘H where we use the fact that monomials of type cpx;x; with ¢ > j reduce to
CkisGij-
Now let A result non-trivially from an element of G. For i > 7 > k that is

h = xigjk — gijTr
= T; .Tjﬂ?k — $k$j — Z Cjklﬂjl — xixj — iEjfﬂi — Z CijliL'l T
l l

= —T;TpT; — Z CillT; T + T2, T + Z CijlTI T,
l l

and h reduces to
r.o_
h' :=h+ gixT; — Tjgir — gjrTi + Trgij
= — LTy — Z CiklTi ] + TiT;Ty + Z CijlTI Xk

l l

+ | T — Ty — Z Cikly | Ty — X5 | il — Ty — Z Cikl]
l l

— | vjrr — 2R — Z CikiTy | Ty + T | T3y — T2 — Z Cij1T]
! !

=- Z CiklTiZl + Z Cijl LT,
] 1
— Z CillT1T5 + Z CiklT;T]
] 1
+ Z CiklT1 Ty — Z CijlTT.
]

l

The leading terms of h’ (except those which include squares) do not cancel each other out

SO
/
h = — E CikiTi Ty + E CijlT 1T — E CiklT1T5 + E CiklT; 1 + E CikiTIT; — E Cijl T T

£ I#k 1+ 15 1£i I+k
reduces further to

"no._
h' = Z - Z CikiCits + Z CikiClis + Z CikiCjly — Z CikiCljs + Z CijiChis + Z CijiClks | Ts

s <t >1 I<j I>j <k >k

= Z — Z CjkiCils + Z CkilCjis + Z CijiCkls | Ts,
s / ] /
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because ¢;jr = —cjir and ¢, = 0 for all ¢, 7, k. Moreover, the Jacobi identity yields

0= [es, [ej, ex]] + e, [ex, e]] + [ex, [es, €]

= Z €i, Cjmer] + Z €j, Cri€l] + Z €k, Ciji€l]
- Z Cikl Z Cils€s + Z Ckil Z Cj1s€s + Z Cijl Z Ckls€s

= Z (Z CikiCits + Z CrilCils + Z Cijlckzls> Cs-
s Ji l l
It follows that
Z CjkiCils T+ Z CrilCjls + Z CijiCris = 0
] ) ]

for s > n and
Ts | Z CiklCils + Z CkilCjls + Z CijiClis
] 1 ]

for s < n if the right hand side is non-zero. Thus A” monomially reduces to zero w.r.t.
H.

Next let h result from a trivial syzygy of an element of G and an element of H. Then
with ¢ > j and x € X we have

h = hyxz;x; — r2RTG45
=TETpXT;T; — TpTpX (l‘il’j — ;X — Z Cijlxl)
l

= IpTRTT;X; + Z TkCijiTRTX]
!

which reduces to
h' =h — hyre;z; = Zrkciﬂxkxml
1

and thus monomially reduces to zero as well.
Finally let A result non-trivially from an element of G and an element of . Then

h = hiSCj — rigij = TiQZiSCj —7T; (xixj — JJJ'QZZ' — Z Cijkxk) = TZ‘SL’jl’i + ZTiCiijJk

k k
reduces to
W= h—ah = chwm = Z TiCik T,
k=n+1
because ; Y, Cijp%r = 1ilx;, ©;] = [riz;, x;] = 0 and, therefore, ¢, = 0 for £ > n and
1% | 7iciji for k < n if the right hand side is non-zero. Thus A’ monomially reduces to zero
w.r.t. H. ]

27



Theorem 4.20.

Let X be a free monoid on a finite alphabet and £ a finitely generated Lie algebra over
R with the notations from Remark 4.18. Our global monomial ordering shall be the
graded left lexicographical one. Then U is generated by the residue classes of 7" - - -z
in P/(G UH) with m; € Ny and the relations in U are given via rx; = 0, i.e.

gy A RN [ V1< SN i € No})

Proof.

Suppose that W := ({2 -- -2y | V1 <i < N : m; € Ny}) is a proper submodule of U
with a monomial ¢ € X of minimal degree such that ¢ ¢ W. Therefore, t ¢ {7 - - 2y" |
V1 < i < N : m; € No} and thus there exist 7 = 2 ® y € X© and ¢ > j such that
t = 7(x;x;) = zx;x;y. Now consider t' = zxjx;y — Y, ciwray. Then LM(t') < LM(?) in
the graded left lexicographical ordering and

t—t =x (xixj — Tl — Z Cz‘jm) Y =79

l

is a Grobner representation w.r.t. {g;;}, hence ¢ reduces to ¢’ w.r.t. {g;;}. This is a
contradiction to ¢ being minimal, and thus W = U.

Next we assume that there are t; € {7 ---2yV | V1 <i < N : m; € Ny} and non-zero
r; € R, such that >, r;it; =0 € U. Clearly ), rit; does not reduce any further w.r.t. G,
but by our assumptions it reduces to zero w.r.t. G UH. Thus we can only reduce w.r.t.
‘H and the proof is complete. m

Especially, if P is commutative, then U(L) = P/(r;x;) as a module and if L is free then
U(L) is also free with basis {z{" -+ 2™ | m; € Np}.
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5 Commutative Grobner bases over Euclidean do-
mains

We are especially interested in the case where R is a Euclidean domain, since implementa-
tions in SINGULAR [24] are for Z or its quotients Z/mZ. What is missing in our approach
from chapter 4 motivated by Pritchard [7] is a canonical form for reductions. To achieve
this, we need to extend the definition of a Grobner basis and will introduce a new type
of polynomial. Lichtblau [6] refers to these polynomials also as “syzygy-polynomials”,
since they correspond to overlap relations of leading monomials. However, on the level
of coefficients there is no cancellation taking place and we will refer to this new type of
polynomial as a “G-polynomial” as it is done by Eder et al. in [1].

Let R be a Euclidean domain and P = R[X]| = R[zy, ..., x,]. We fix a global monomial
ordering < on the commutative monoid X = (xy, ..., x,). Clearly P is a quotient of the
polynomial ring over the free monoid, that is generated by X;, ..., X,,. More precisely
P is isomorphic to R(Xj, ..., X,) modulo all commutators [X;, X;| := X;X; — X;X; for
1<i<j<n.

Definition 5.1.
Let f, g € P\ {0}, G={g1, ..., gm} € P\ {0} be a finite set and Z C P be an ideal.

e We say that ¢ LM-reduces f, if LM(g) | LM(f) and there are a # 0 and b < LC(f)
(in the Euclidean norm), such that LC(f) = a LC(g) +b. Then the LM-reduction
of f by g is given by

LM(f) |

LM(g)

If ¢ is a monomial occurring in f with coefficient ¢, such that LM(g) | ¢t and ¢ =
aL.C(g) + b with a, b as above, then we say that g reduces f.

Extending this to sets we say that f reduces to some r € P w.r.t. G, if there is a
finite sequence of reductions of f by g; € G that ends at 7.

h:=f—-a

e We say that f has a weak Grobner representation w.r.t. G if f = >7", h;g; for
some h; € P and LM(f) > LM(h;g;) for all 1 <i < m with h; # 0.

e We say that f has a strong Grobner representation w.r.t. G, if f = >"" h;g,
for some h; € P and there exists a unique 1 < j < m such that LM(f) = LM(h,g;)
and LM(f) > LM(h;g;) for all i # j with h; # 0.

e G is called weak Grobner basis for Z, if G C 7 and L(G) = L(Z).

e ( is called strong Grobner basis for Z, if G is a weak Grobner basis for Z, such
that for all f € Z\ {0} there exists g € G with LT(g) | LT(f).

Note, that the LM-reduction in the above case is given by

h = BLM(f) + tail(f) — aiﬁg ; tail(g) .

l.o.t.
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This is a “smaller” polynomial, either in terms of the monomial ordering of leading mono-
mials (if b = 0) or in terms of the Euclidean norm of leading coefficients (|b| < |[LC(f)]).
In the field case every Grobner basis is a strong Grébner basis. To see this, let Z C K[X]
with weak Grobner basis G = {¢1, ..., g} and f € Z. Suppose, that without loss of
generality f and all g; are normalized. Otherwise we divide each polynomial by its lead-
ing coefficient. Then ¢ := LM(f) = >}, piLM(g;) =: >, pit; for some p; € K[X]. Let
pi = 2, Njth and M, = {(4, j) € N2 | tit; = w} for w € X. Then t = 3,  Nitit; and
thus M; # 0. Therefore, there is (4, j) € M, such that ,LM(g;) = tit; = t = LM(f), i.e.
g is strong.

However, this does not hold over Z, since we cannot divide by leading coefficients.

Example 5.2.
Let R =7Z, P =Zlz] and Z = (z). Then G = {4z, 5z} is a Grobner basis for Z, because
br —4x = x € L(G). But LT(4z) 1 LT(x) and LT (5z) 1 LT(x), thus G is not a strong
Grébner basis.

Lemma 5.3.
Every ideal Z C P has a weak Grobner basis.

Proof.

Since P is Noetherian according to Hilbert’s basis theorem 2.1, there is a finite generating
set Gy of Z and clearly L(G;) C L(Z). If we have equality, then G, is a weak Grobner basis
for Z. Otherwise there exists g; € G such that LT(go) ¢ L(Go). We define Gy := G U{g1}
and see that L(G;) € L(G2) C L(Z). If the latter inclusion is also strict, we repeat the
procedure and iteratively construct a sequence {G;}; with

L(G1) € L(G2) S L(Gs) S .. € L(Z).

Since P is Noetherian, this ideal chain becomes stationary, thus L(Gy) = L(Z) for some
k € N, and hence G := Gy, is a weak Grobner basis for Z. n

We note at this point that it is possible to obtain a Strong Grobner basis from a weak
Grobner or more precisely from any generating set, but to do this constructively we need
some preparation. We do not give a theoretical proof of this statement, but present an
algorithm with the desired outcome.

Theorem 5.4.
Let G C P\ {0} and {0} #Z C P be an ideal. The following are equivalent.

1. G is a strong Grobner basis for Z.
2. Every f € T\ {0} has a strong Grébner representation w.r.t. G.

3. Every f € P\ {0} has a unique remainder after reduction by G, i.e. if f reduces to
r1 and ro w.r.t. G and both r; and r, cannot be any further reduced, then r; = rs.
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In the case of “3.” we say that f has a canonical reduction w.r.t. G. As a convention,
we say that 0 € Z always has a strong Grobner representation and that 0 € P always
reduces uniquely to zero.

Proof. (cf. [6], Theorem 9)

For “1. = 2.7 let f € Z. Since G is a strong Grobner basis, there exists g € G with
LT(g1) | LT(f). Then we can find hy € P such that LT(h191) = LT(f) and f1 := f —hig
has a smaller leading monomial w.r.t. our global monomial ordering than f. On the other
hand f; € Z and we can repeat the procedure iteratively with

LT(fi1) o
LT(g:) "
—_——

=:h;

Ji = fioa—

Since < is a well ordering, we stop at some k € N and obtain f = Zle h;g;. Without
loss of generality we choose the g; to be pairwise distinct, otherwise we simply collect
h; and rearrange. Then LM(hyg1) > LM(h;g;) for j > 2 and we have a strong Grobner
representation of f w.r.t. G.

For the converse note that, if f € Z has a strong Grobner representation ), h;g; w.r.t. G,
then LT(f) = LT (h;g;) for exactly one ¢ and thus LT(g;) | LT(f).

For “2. = 3.7 let r; and 79 be remainders as in 3. Then r; — ry has a strong Grobner
representation w.r.t. G, for instance ry — ro = Y, h;g; with ct :== LT(r; — r3) = LM(h;g,)
(recall that j is uniquely determined). Let ¢y, ¢ be the coefficients of ¢ in ry, ry respec-
tively. Suppose that ¢; = 0. Then LT(ry) = ct and thus g; reduces 7, which contra-
dicts the assumption that ry is fully reduced w.r.t. G. Therefore, ¢1, co # 0, but then
LC(gj) | (1 — ¢2), because (¢; — c2)t must be reducible, while ¢;t, cot are not. Hence
c1 = ¢ (mod LC(g;)) (i-e. by reduction ¢; = ¢3) and so LT (r; —r2) = 0 which means that
r = To.

To show “3. = 2.” let f € Z be reducing uniquely to zero w.r.t. G. Thus we can write
[ =2 hig; with max; .{LM(h;g;)} =t := LM(f). This is a Grébner representation and
we need to show that card({i | LM(h;g;) = t}) = 1. Suppose it is bigger than one. Since <
and the Euclidean norm are well orderings, we can assume additionally that ¢ is minimal
among all monomials ¢ with the property card({i | LM(h;g;) = t}) > 1 and ¢ := LC(f) is
minimal among all coefficients for which there is no strong Grobner representation with
leading monomial ¢. Also without loss of generality let {i | LM(h;g;) =t} = {1, ..., k}
and b = Y. \,LC(g;) the Bézout identity for the greatest common divisor of all leading
coefficients which can be obtained from the extended Euclidean algorithm. Especially we

have b | ¢, say ¢ = db. Let s; = for 1 <i < kandg=>,s\g. By this con-

t
LM(g:)
struction we have LT(g) = bt. Suppose b = c¢. But, since b < LC(h;g;) < ¢, this implies
k =1, thus b < ¢. As ¢ was chosen to be minimal there is a strong Grébner representation
of g, say g = >, hig; with LM(ingj) = t. Since ¢ = db, we have LM(f — dg) < t and,
therefore, (f — dg) has a strong Grobner representation. In particular f has a strong
Grobner representation. O]

The condition “Every element of Z has a strong Grobner representation” is not a useful
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criterion for an algorithm to terminate. Therefore, we introduce polynomials, which we
want to check for zero-reductions in order to obtain a strong Grébner basis constructively.
S-polynomials are well known from the field case, but do not suffice over rings. Hence a
new type of polynomial is defined as in [1] or similarly in [6].

Definition 5.5.
Let f, g € P\ {0}. We set

t t
t .

o ¢ :=lem(LM(f),LM(g)), t; := LM(f)’ ¢ LM(g)’

a a
e a:= lem(LC(f),LC L Af = ey Oy = and
e b := ged(LC(f),LC(g)) with coefficients by, b, € R such that b = by LC(f) +

by LC(g).
Then the S-polynomial of f and g is defined as

spoly(f, g) := astyf — agtyg
and a G-polynomial of f and ¢ is defined as

gpoly(f, g) == bstsf + bytyg.

Example 5.6.
We reconsider our previous example with f = 4x and g = 5z. Then

e t=uty=1t,=1,
o a=20,ar =5, a;, =4 and
e b=1=(-1)-4+1-5withb;=-1,b, =1

We optain spoly(f, g) =5-1-4x—4-1-5z = 0 and gpoly(f, g) = (=1)-1-4dz+1-1-5z = x.
In fact, {4z, bx, x} is a strong Grobner basis for Z. When computing the S-polynomial
the leading terms cancel each other out. The G-polynomial clearly has the advantage of
reducing the leading coefficients whilst keeping the leading monomial.

However, a G-polynomial is not unique. Take for example f = 42 4+ 1 and g = 6y + 3.
Then ged(LC(f),LC(g)) =2 = (—1)-44+1-6 = 2-4+(—1)-6 and we obtain gpoly;(f, g) =
2xy+3x —y # 2xy — 3x+ 2y =gpolys(f, g). So to speak of “the” G-polynomial we fix one
algorithm to compute the greatest common divisor and coefficients of the Bézout identity,
well known as the extended Euclidean algorithm (EXTGeCD). Note that if we speak of a
Euclidean norm, we mean a total ordering, thus over Z we have |0| < |1| < | = 1] < |2]| <
| —2| <..., etc

Algorithm 5.7. (Extended Euclidean algorithm)
The following algorithm is well known and computes for two elements of a FKuclidean
domain the greatest common divisor plus coefficients for their Bézout identity.
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ExTGeD

input: a, b € R

output: (z, y, c) € R"3 with ¢ = ged(a, b) = ax + by

0l: r=b,7"=a,s=0,§=1,t=0

02: while r # 0 do

03:  determine ¢ € R such that |’ — ¢r| < |r| is minimal
04:  (r,r', s, 8)=(r"—qr,r, s —qs, s)

05: end while

06: if b # 0 then

o7: 1=

08: end if
09: return (s, t, ')

Correctness and termination follow from the uniqueness of division with remainder in
Euclidean domains (g is uniquely determined) and the fact that the Euclidean norm of r
decreases strictly. If b | a then the algorithm returns (0, 1, b) thus one coefficient of the
corresponding G-polynomial is always zero.

Definition 5.8.
Let & be the set of all finite subsets of P, that are partially ordered w.r.t. <. A map
NF: P x & — P is called strong normal form, if for all f € P and G € & we have

1. NF(0, G) = 0,
2. NF(f, G) =0or no g € G LM-reduces NF(f, G) and

3. NF(f, G) = f or NF(f, G) — f has a strong Grébner representation w.r.t. G for
f#0.

From now on we will refer to strong normal forms simply as normal forms.

Algorithm 5.9. (Normal Form Algorithm over R[X])
The following algorithm computes a normal form using LM-reductions.

33



NORMALFORM

input: f € P, G C P finite and partially ordered

output: normal form of f w.r.t. G

01: h=f

02: while h # 0 and G, = {g € G | g LM-reduces h} # 0 do

03:  choose g € Gy,

04:  choose a € R\ {0} with LC(h) = aLC(g) + b for b < LC(h)
05 h=h- aLM(h)

LM(g)
06: end while
07: return h

g LM-reduction of h by g

The algorithm terminates, because both the Euclidean norm and < are well-orderings. If
f = 0, then clearly the procedure returns 0. If h = NormalForm(f, G) # 0, then there
exists no g € G such that g LM-reduces h. Furthermore, if f # NORMALFORM(f, G),
then there is an element g € G that LM-reduces f. If the hg, ..., h,, are the elements
LM(h,)
LM(g:)

computed throughout the while loop, then the sum . a; g; is finite and has a

strong Groébner representation w.r.t. G.

Theorem 5.10.
Let G C P\ {0}. The following are equivalent.

1. G is a strong Grobner basis for Z := (G).

2. For all f, g € G both their S-polynomial and G-polynomial reduce to zero w.r.t. G.

3. Let f, g € G. If LC(f) | LC(g) or LC(g) | LC(f), then spoly(f, g) reduces to zero
w.r.t. G. Otherwise if LC(f) 1 LC(g) and LC(g) 1 LC(f), then gpoly(f, g) reduces
to zero w.r.t. G.

Proof.

The implication “1. = 2.” follows immediately from Theorem 5.4.

For “2. = 1.7 let G ={¢1, ..., gm}. Let f € T with ¢ := LM(f) and f = >, pig; a weak
Grobner representation for some p; € P. We choose a representation of f where ¢ :=
max{LM(p;g;)}; > t is minimal and need to show that the set {1 <i < m | LM(p;g;) = t}
contains exactly one element. Then we have a strong Grobner representation of f w.r.t.
G. Now suppose for a contradiction that after rearranging indices we have LM(p;g;) = t
(eventually after rearranging indices). We choose ), [LC(p;)LC(g;)| to be minimal in the
Euclidean norm w.r.t. £ and set

_ lem(LM(g;), LM(g;)) and  w = t

ij = LM(g;) ~ lem(LM(g;), LM(g;))
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for 1 < i, j < k. Furthermore, for the Bézout identity d := ged(LC(g1), LC(g2)) =
blLC(gl) —+ bgLC(gz) with bl, b2 € R we set

_ lem(LC(g1), LC(g2))

e lem(LC(g2), LC(g1))
e LC(g) :

LC(Q2)

and Co1 =

Then

spoly(g1, g2) = ciatizg1 — catznge  and  gpoly(gi, g2) = bitiagr + bat2i1ga,
which reduce to zero by our hypothesis. Note that d divides LC(p;)LC(g1)+LC(p2)LC(g2),
thus there exists a € R\ {0}, such that
LC(p1)LC(g1) + LC(p2)LC(g2) = ad = abiLC(g1) + ab,LC(g2)
or equivalently
LC(p1)LC(g1) = abiLC(g1) + aboLC(g2) — LC(p2)LC(g2),

i.e. LC(p1) = aby + bcyp for some b € R\ {0} and analogously LC(ps) = aby + bea;.
Therefore, with |a1LC(g1) + a2L.C(g2)| > 0 and by the triangle inequality we have
[LC(p1)LC(g1)] + [LC(p2) LC(g2)]

=|(aby + bey2)LC(g1)] + |(abg + bear )LC(go)|

>[abiLC(g1)| + [be12LC(g1)[ + [ab2LC(g2)| + [beai LC(go)|

>[abiLC(g1)] + |ab2LC(g2)|

>|abLC(g1) + abaLC(g2)|

=lad],

thus |ad| < |[LC(p1)LC(g1)| + |LC(p2)LC(g2)|. Furthermore, we have
P1g1 + page = LC(Pl)LM(Pl)gl + tail(p1)g1 + Lc(pz)LM(P2)g2 + tail(p2) g2

= LC(p1) 91 + tail(p1)g1 + LC(p2) 7 92 + tail(p2)ge

LM( 1) LM( 9)
= LC(p1)t1owgy + tail(p1)g1 + LC(p2)tarwgs + tail(ps)ge

= aw gpoly (g1, g2) + bwspoly(g1, g2) + ‘Eail(pl)gl + tail(pg)g%
Lo.t.

This yields a new representation for f with polynomials p; € P. But, since
LM(7 spoly(g1, g2)) < £, LM(tail(hy)g1) < &, LM(tail(hy)g;) < t and
|ad| < [LC(p1)LC(g1)] + [LC(p2)LC(g2)|, we have

Z ILC(p};)LC(g;)]
= [LC(®)g))]

=|LC(dr gpoly(g1, g2))|
=|ad|
<|LC(p1)LC(g1)| + |LC(p2)LC(g2)],
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which contradicts our assumption that the leading coefficient of our original representation
are minimal. Therefore, we have a strong Grobner representation of f w.r.t. G, ie. G is
a strong Grobner basis for Z.

Clearly “2. = 3.” holds.

To show “3. = 2.” we assume without loss of generality that |[LC(f)| < |LC(g)| in the
Euclidean norm. If LC(f) | LC(g), then by Lemma 5.13 gpoly(f, g) reduces to zero
w.r.t. {f, g} and by 3. also spoly(f, g) reduces to zero w.r.t. {f, g}. Next we assume
that LC(f) 1 LC(g). Let d = ged(LC(f), LC(g)). We write spoly(f, g) = astytail(f) —
ayt, tail(g) and gpoly(f, g) = dt+ byt tail(f) + b,t, tail(g) with the usual notation. Then
with

~lem(LC(f), LC(g)) _ LCLC() _
agd = Lot ged(LC(f), LC(g)) = SO LC(f)
and
agbf + afbg - lcm(LC(f), LC(g)) (L(I;]Eg) + LCbe))
= lem(LC(f), LC(9)) (bf Lfé{;;%@f(”)
===
we have

spoly(f, gpoly(f, g9)) =ty f — aggpoly(f, g)
= LC(f)t + tytail(f) — a,(dt + byt tail(f) + byt, tail(g))
= trtail(f) — azbsty tail(f) — aybyt, tail(g)
= (1 — agby)tstail(f) — byayt, tail(g)
= byaytytail(f) — byagt, tail(g)
= byspoly(f, g).

Analogously spoly(gpoly(f, g), g) = byspoly(f, g). Therefore,

gpoly(spoly(f, gpoly(f, g)), spoly(gpoly(f, 9), 9))
=gpoly(by spoly(f, g), byspoly(f, g))
=spoly(f, g),

because by, by are coprime. Hence we can obtain the S-polynomial of f and g iteratively.
This completes the proof. O

When computing a strong Grobner basis, then this criterion tells us to stop, when all S-
and G-polynomials reduce to zero by the second condition. On the other hand we could
use the third of the three equivalent conditions by only considering S-polynomials when
one leading coefficient divides the other. Then it makes sense to choose pairs by their
leading coefficients, when computing their S- and G-polynomials.
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Algorithm 5.11. (Buchberger’s algorithm for strong Grébner bases over R[X])
The following algorithm computes a strong Grobner G basis for an ideal Z given by a set
of input polynomials.

SBBA

input: Z = (f1, ..., fm) € P, NORMALFORM
output: strong Grobner basis G for 7

01: G={fi, ..., fu}

02: £ = {spoly(fi. ), gpoly(fi, f;) | i < j}
03: while £ # () do

04:  choose h € L

05  L=L\{h}

06:  h=NF(h, G)

07: if h # 0 then

08: L = L U {spoly(g, h),gpoly(g, h) | g € G}
09: G=GU{h}

10: end if

11: end while

12: return G

The correctness of the algorithm follows from Theorem 5.10, “1. < 2.”. At the beginning
G consists of the input polynomials and all S- and G-polynomials of possible pairs are
constructed. Each such element A goes through a sequence of LM-reduction by elements
of G in shape of the normal form procedure. Once h is fully reduced it is either zero or
added to G and for every new pair the S- and G-polynomial is constructed. Once all S-
and G-polynomials reduce to zero we can apply Buchberger’s Criterion 5.10 to see that G
is indeed a strong Grobner basis for Z. Termination of the algorithm is analogous to the
proof of 5.3, where we used the fact that P is Noetherian.

The above algorithm completely suffices to compute a strong Grobner basis. At least
in theory. We are interested in speeding up the process by looking at the steps of the
algorithm and see whether we can improve them. First of all note that the core of
the algorithm is the normal form which is based on the idea of LM-reductions. These
reductions take place if one leading monomial divides another regardless of the leading
coefficient. If we can reduce the number of elements of the set G;, in Algorithm 5.11 that
LM-reduce h, then we are in a situation similar to the field case as the following Lemma
shows.

Lemma 5.12.

For g, h € P\ {0} we say that g LT-reduces h, if LM(g) | LM(h) and LC(g) | LC(h).
LC(h

Especially in the definition of LM-reductions we have a = L(ngg; and b = 0. Then the
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LT-reduction of A by g is given by
LC(h) LM(h)
— g‘
LC(g) LM(g)

These are precisely the type of reductions that take place in the field case. Now, if we
replace the set G, in Algorithm 5.9 by

Gy :={g € G| g LT-reduces h}

then Algorithm 5.11 still terminates and computes a strong Grébner basis for the given
input ideal Z.

Proof.

Let h € P\ {0} be an element obtained during Algorithm 5.11 by LT-reductions. We
assume, that there exists a g € G that LM-reduces h, but does not LT-reduce it, i.e.
LM(g) | LM(h) and LC(g) 1 LC(h) with |LC(g)| < |[LC(R)|. Then gpoly(g, h) = byt,g +

LM(h

bptph with t, =1, t, = LMEg)) and ged(LC(g), LC(h)) = b,LC(g) + b,LC(h). If by, = 1,
then LC(h) = —b,LC(g) + ged(LC(g), LC(h)) with |ged(LC(g), LC(h))| < |LC(h)| and
the LM-reduction of h by g is given by

g = bytyg + h = gpoly(g, h).

LM(h)
. LM(g) i
a € R\{0}. If h is further LM-reducible by some g then g # g, because [LC(h)| < [LC(g)l,
i.e. g cannot LM-reduce h any further by definition. Let the LM-reduction of h by g be
given by

Otherwise if b, # 1, then let h = h — a

g be a LM-reduction of h by ¢ with

"G T T e T G
for some @ € R\ {0} and
LM(h)  _LM(h)
"IM(g)? " TM()?

is either a multiple of spoly(g, §) or of gpoly(g, ), because the leading monomials of the
two summands are equal. Since the algorithm terminates if and only if G is a strong Grob-
ner basis, we find strong Groébner represenations for the S- and G-polynomial and thus
h will be eventually replaced by the above LM-reduction of k. However, this sequence of
LM-reductions will stop after finitely many steps, because the leading monomial decreases
in the global monomial ordering and thus we may assume without loss of generality that
h does not LM-reduce any further. Then we compute the G-polynomial of ¢ and h. Note
that LM(h) = LM(h) and the LM-reduction corresponds to the first step in the Euclidean
algorithm. Therefore, we have
. LM(h)
gpoly(g, h) “TM(g)

g+ h = gpoly(g, h).
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In both cases we showed that the LM-reduction is not necessary, because it is obtained
through a G-polynomial, which is added to the set £ in the later steps of the algorithm.
This completes the proof. n

Another point of improvement is finding criteria to predict zero reductions before S- or
G-polynomials are computed and unnecessarily added to £ in Algorithm 5.11.

Lemma 5.13.
Let f, g € P\ {0} with LC(f) | LC(g). Then gpoly(f, g) reduces to zero w.r.t. {f, g}.

Proof.

In the definition of the G-polynomial we have b = ged(LC(f),LC(g)) =LC(f) and thus
we can choose (or compute with EXTGCD) by = 1 and b, = 0. Then gpoly(f, g) =t;f is
by f reducible to zero. m

The next criteria are due to Buchberger. The first one is known as Buchberger’s product
criterion.

Lemma 5.14.
Let f,g € P\ {0} with LC(f), LC(g) coprime and LM(f), LM(g) coprime. Then
spoly(f, g) reduces to zero w.r.t. {f, g}.

Proof.

Under the above assumptions we have spoly(f, g) = LC(g)LM(g)f—LC(f)LM(f)g
(9g—tail(g))f — (f—tail(f))g =tail(f)g—tail(g)f, but, since LM(f) divides LT (tail(g)
while LM(g) does not and vice versa, the two leading terms LT (tail(g) f) and LT (tail(f)g
do not cancel each other out. To see this, suppose otherwise that LT(tail(f)g)
LT(tail(g)f). Since R is a domain, we have that LT (tail(f)g) = LT (tail(f))LT(g) and
LT (tail(g)f) = LT(tail(g))LT(f). But then lem(LT(f), LT(g)) = LT(f)LT(g) divides
LT (tail(f))LT(g), which contradicts the fact that LM(tail(f)) < LM(f).

On the other hand tail(g) f reduces to zero w.r.t. {f} and tail(f)g reduces to zero w.r.t.
{g}, thus we have that spoly(f, g) reduces to zero w.r.t. {f, g}. O

The next two lemmata are versions of Buchberger’s chain criterion, one for S-polynomials
and one for G-polynomials, but we first need the following remark.

Remark 5.15.

o Let {a, b, c} € R\ {0} or {a,b, ¢} a set of non-zero monomials. If a divides
lem(b, ¢) then lem(a, b) divides lem(b, ¢). To see this, let ad = lem(b, ¢). Then ad
is a multiple of a as well as of b. Thus lem(a, b) divides ad = lem(b, ¢).

e Let f,g € P\ {0}, {91, 92, g3} C G\ {0} and ¢t := lem(LM(g1), LM(go)) with
LM(g3) | t. If both f and g have strong Grobner representations w.r.t. G and

LM(f) <t, LM(g) < t, then so does f + g inductively.
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Lemma 5.16.
Let G C P\ {0} and f, g, h € G with

L LM(f) [ lem(LM(g), LM(h)),
2. LC(f) | lem(LC(g), LC(h)) and
3. both spoly(f, g) and spoly(f, h) have a strong Grobner representation w.r.t. G.

Then spoly(g, h) has a strong Grobner representation w.r.t. G.

Proof.

Our goal is to write spoly(g, h) as a sum of spoly(f, ¢g) and spoly(f, k) such that the
leading terms do not cancel each other out. Then spoly(g, h) has a strong Grobner
representation w.r.t. G. For this we define

~ lem(LC(a), LC(b))

' lem(LM(a), LM(b))
Cab = LC(a)

and t, = LM (a)

with a, b € {f, g, h}. We recognize these as the factors in the definition of S-polynomials.
By Remark 5.15 and assumptions 1., respectively 2., we have t,; | tp, and typ | tgn,
respectively ¢if | cpg and cyr | cgn. Also note that LC(a)c, = LC(b)cy, and we have the
analogous symmetry relation for ¢,,. Thus

t ton

ho 29 spoly (f, h) — 2 spoly(f, g)
Chf thy Cof Lgf

_Cng thg( )— Chtgh(

cratnf — cnglngh Crotraf — Coftyrg)

Chf thy Cof Lot

ChgCfh thglsn CohCg tont
:Cghtghg_chgthgh+< 9%th “hg"f f— fglyg fgf>

Chy  tny Cof  lof
ChoCrh tholtth  ConCrg tgnt
= spoly(g, h)+< gcf tg fho_ Cghtfglg fg> f
A Chf hf Cgf  lgf

and the above symmetry relation for ¢, yields

chgCrn  LC(h) engesn  LC(g) conepn  LC(g) LC(h)

— = = Coh = Cha-
g LC(h) ey — LC(f) e LC(H) ™ LC(F) ™
CghCytg LC(h) thgtfh LM(h) tghtfg

Analogously we have —2 = cho and = the = . Therefore,
& Y Cgf LC(f) hg thf LM(f) hg tgf

the expression * in brackets vanishes and we have

Chg th Cgh tgh
spoly(g, h) = 2279 spoly(f, h) — "2 spoly(f, g).
Chf thf Cof tyf
From Remark 5.15 it follows that spoly(g, h) has a strong Grobner representation w.r.t.
g. m
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Lemma 5.17.
Let G C P\ {0} and f, g, h € G with

1. LM(f) | lem(LM(g), LM(h)) and

2. LC(f) | ged(LC(g), LC(h)).
Then gpoly(g, k) has a strong Grobner representation w.r.t. G.
Proof.
We use the notation for ¢, from the proof of Lemma 5.16 with a, b € {f, g, h}. Let
ged(LC(g), LC(h)) = by,LC(g) + b,LC(h). Then

gpoly(g, h) = bytgng + bitpgh

= ged(LC(g), LC(h)) lem(LM(g), LC(h)) + byt tail(g) + bptp, tail(h)

and by the second assumption we especially have that LC(f) divides both LC(g) and
LC(h). Therefore, we have

spoly(f, g) = Iﬁgé?; trgf —tgrg = Eg((% trgtail(f) — t,p tail(g)

and

spoly(f, h) = Iljgggtfhf —tprh = Egg%tfh tail(f) — tyy tail(h).

Furthermore, note that
_ tghtfg _ lcm(LM(g), LM(h)) _ thgtfh

tof LM(f) thy
is a monomial by our first assumption, and

LC(g) |, LC(h) _ b,LC(g) +bALC(h) _ ged(LC(g), LC(h))

ILC(f) +thC(f) B LC(f) LC(f) <K

is an element of R by our second assumption. Then
dwLT(f) = ged(LC(g), LC(h)) lem(LM(g), LC(h))

and altogether we obtain
t t
gpoly(g, h) — dwf + b,-2= spoly(f, g) + by2 spoly(f, h)
tof th
=gcd(LC(g), LC(Rh)) lem(LM(g), LC(h)) + bytyn tail(g) + butp, tail(h)
— (dwLT(f) 4 dw tail(f))

d:=5b

- (bgtgh tail(g) — b, ESE?; tg:tff 9 tail( f))
_ (bhthg tail(h) — by Egg;; thtght; " tail( f))

_ ( LC(g) Lont g b LC(h) thgt rn B
TLC(f) ty | "LC(f) g
=0.

dw) tail(f)
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Hence we obtain a strong Grobner representation

¢ ¢
gpoly(g, h) = dwf — bgﬁ spoly(f, g) — bhth spoly(f, h)
g

w.r.t. G, because the leading term is given by dwLT(f). O

Example 5.18. (cf. [6], Example 16)

Let Z = (f) = T2%y? + 8xy? + 3wz — 11, fo = 11y%2 + 42y + 2y2® + 2, f3 = dbrlyz + 2% +
222+ 5z, f1 = Twyz + 3xy +5r+ 4y +7) C Z[z, y, 2] with graded lexicographical ordering
x >y > z. A strong Grobner basis for Z is given by

G = {z — 14760987199637601090452154096210512593721,
y — 6355322887725405337810105619887333184234,
z + 10898452513151823962606330508750762670219,
34475640417355562336236396270436281195926}.

When computing over fields one can achieve efficiency with lifting methods like Hensel
lifting or the Chinese remainder theorem. We will address these methods in chapter 6, but
it should be mentioned that lifting usually leads to a loss of information on coefficients.
However, it can be useful to know about the existence of constants contained in the ideal
or small polynomials, meaning small number of terms. We can use computations over
quotient fields to find these elements.

Lemma 5.19. ~
Let £ := quot(R) be the quotient field of R. Let Z = (f1, ..., f) € P and 7 =
(fi, -y fm) © Klzy, ..., 2] = K[z] be the corresponding ideal generated over K[z].

If 1 € T (ie. {1} is a Grébner basis for Z or in other words Z = K[xy, ..., ,]), then
ZNR #{0} (i.e. Z contains a constant).

Proof.
Let 7 : K[z]™" — K[z] with e; — f1, em — fim and epq1 — 1. Since 1 € Z, there is
an element « in the kernel of 7 with o = pre; + ... + pmem + emy1 for some p; € Klz].

Then 7(a) = 0 or equivalently m(em41) = — >~ pim(e;). Let ¢ € R be a least common
multiple of all denominators of all the coefficients occurring in the p;. Then cp; € P and
hence c =c-1 = cm(emi1) = — 2y epim(er) = — > epifi € L. O

Algorithm 5.20. (Precheck for Constants)
The following algorithm is based on the proof of Lemma 5.19 and returns an ideal equal
to the original one, but given by a different generating set.
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PRECONST

input: Z=(f1, ..., f) CP

output: J C P ideal with 7 =7

01: compute a Grobner basis G for (fi, ..., fn) C K[z]
02: if 1€ G do

03:  compute Z = Syz({f1, ..., fm, 1}) C K[z]™H!
04: choose @ = prey + ... + pmem + €mi1 € 2

05:  c=lem({d | d is a denominator of a coefficient occurring in one of the p;})
06: j:<c>f17"'afm>

07: end if

08: return J

If we find a Grobner basis for the ideal over K that contains a monomial x € X, then we
can clearly replace 1 in the above proof by . We construct the homomorphism 7 such
that e, 1 — .

Example 5.21. (cf. [1], Example 21)
Let Z = (fi =x+4, fo=2y+9, fs =2 —y+8) C Z[z, y] with the lexicographical
ordering > y. Then

fo=spoly(fi, f2) =yfi — fo=4y -9,
fs =spoly(fi, fs) = fi—fa=y—4

and

spoly(fs, f5) = fu —4fs =T.

On the other hand a consideration of the syzygy module Syz({ f1, fa, f3, 1}) over Q yields

(y—4)fi—fot4afs=7=0.

A strong reduced Grobmer basis for Z is given by {z +4, y — 4, 7}.

Lemma 5.22.
Let f, g € P\ {0} with LM(f) = LM(g). Then (f, g) = (spoly(f, g), gpoly(f, 9)).

Proof.

We write ged(LC(f), LC(g)) = byLC(f) + b,LC(g) =: d. Then
(

lem(LC(f), LC(g)) lem(LC(f), LC(g))
1), Lou)
d d

g
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and gpoly(f, g) = bsf + byg. By this we obtain a coeflicient matrix

LC(g)/d —LC(f)/d 2x2
R= [ bi b 1 cR

with [spoly(f, g), gpoly(f, 9)|"" = R[f, g]*". This shows the fact that (f, g) 2 (spoly(f),
gpoly(g)) (which is trivial). On the other hand note that

LC(g) LC(f)\ _ bsLC(f) +b,LC(g) _ d _
det(R):bgd—<—bf y ): ! y =-=1

which shows that R is invertible and thus R~[spoly(f, ), gpoly(f, ¢)]* = [f, g%, i.e.
(f, g) C (spoly(f), gpoly(g)). This completes the proof. O

This statement becomes irrelevant when LC(f) | LC(g) or LC(g) | LC(f), because then
by Lemma 5.13 the G-polynomial of f and g reduces to zero w.r.t. {f, g}. If this is not
the case, then we can go on and replace g € G by ¢’ := gpoly(f, g) to obtain a polynomial
with the same leading monomial, but with a smaller leading coefficient in the Euclidean
norm. This does not change the generated ideal since (f, g) = (f, ¢’) by Lemma 5.22.
We hereby increase the number of elements that are LM- or even LT-reducible by g,
especially the G-polynomials that were already computed using g. Next we replace f
with spoly(f, ¢’) and continue with the regular procedure.
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6 Commutative Grobner bases over principal ideal
rings

Let P = (Z/mZ)|xy, ..., x,]) = (Z/mZ)[X]. When m is prime, then the base ring is the
finite field IF,,,. When m = 0, then it is the Euclidean domain Z. We covered these cases in
the previous chapters. In any other case Z/mZ is a finite principal ideal ring. Especially
every element is either a unit or a zero divisor. To see this, let S be an arbitrary finite
commutative ring and r € § a non-zero-divisor. Then ¢ : § — §, s — rs is injective.
But, since injective maps from finite sets to themselves are bijective, there exists s € §
such that rs =1, i.e. r is a unit.

Can we use our results for Euclidean domains and fields to compute over Z/mZ? Here is a

naive approach. Let Z = (fy, ..., fx) be an ideal of (Z/mZ)[X] and pick representatives
fi € Z|X] of f;. Consider the ideal Z = (fy, ..., fr, m) of Z[xy, ..., z,] and compute a
Grobner basis G = {g1, ..., g} for Z. We mentioned the advantages of having a constant

as an element of the Grobner liasis in Lemma 5.19. Consider the set of residue classes
G=1{9y,..-.,G,t CPandlet feZ\{0}. Then there exist p, € (Z/mZ)[X] such that

7= 3,5.f. Hence

f —sz‘fi € (m) C Z[X]

is included in the ideal of Z[X] that is generated by m. So we see that F' := {f1, ..., fi}U
{m} is indeed a generating set, such that f € (F) = Z. This is essential. If G is a strong
Grobner basis for Z, then there exists g € G such that LT(g) | LT(f). Especially LM(g) =
LM(f) and m t LC(g), because otherwise m | LC(f) which contradicts LC(f) # 0 in
Z/mZ. Thus LT(g) = LT(g) and, therefore, LT(g) | LT(f) in (Z/mZ)[X]. Since f is
arbitrary, we see that G is indeed a strong Grobner basis for Z.

In theory this is all what is needed to compute Grobner bases over Z/mZ. But we do not
use any properties of the element m or the fact that the base ring is finite. It might be
even more useful to turn the above method around, i.e. to compute a Grobner basis over
Z/mZ and then lifting to Z, which clearly should involve requirements for the leading
coefficients in regards to m. For computational improvements we will attempt to find
statements that use factorizations. Eder and Hofmann developed an algorithm in [3] for
which we present the theoretical background in this chapter.

Example 6.1.
Let f = 3x +4 € Z/6Z[x]. Since we only have one generator, we cannot compute any
S-polynomials, but, since f + f =2 € (f) and LT(f) { LT(2), we see that {f} is not a

Grobner basis of (f). However, the S-polynomial of 3z +4 and 6 over Z[z] is 4 and indeed
{f, 4} is a Grobner basis for (f).

From now on let R be a principal ideal domain and P = R[X| = R[zy, ..., x,]. Form €
R we set R := R/mR and P = R[X]. As we saw in the previous chapter, it was useful to
introduce G-polynomials whose leading coefficient was (up to a unit) uniquely determined
by the greatest common divisor and the other coefficients were determined by our choice
of the Euclidean algorithm. Over principal ideal rings the greatest common divisor is
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not uniquely determined. Also, as we have seen in the previous example, the leading
coefficient could be a zero divisor. Therefore, we introduce a new type of polynomial.

Definition 6.2.

Let f, g € P. S-polynomials and G-polynomials of f and ¢ are defined similarly to
Definition 5.5. Let LC(f)R N LC(9)R = dR. Then d is a least common multiple
of LO(f) and LC(g). On the other hand a generator of LC(f)R + LC(9)R =: ¢R
is given by a greatest common divisor ¢ of LC(f), LC(g). We fix ay, a4, by, by € R
such that a;LC(f) = a,LC(g) = d and b;LC(f) + b,LC(g) = ¢. Furthermore, let

t = lem(LM(f), LM(g)) and t; =

t, = . Then an S-polynomial of f

and ¢ is defined as
spoly(f, g) := astyf — aglyg
and a G-polynomial of f and g is defined as
gpoly(f, 9) = bstsf + byl eg.
Let ann(LC(f)) = aR. Then an A-polynomial of f is defined as
apoly(f) := af.

Since a annihilates LC(f), this is the tail of f multiplied with a, i.e. apoly(f) =
a(f=LT(f)).

Clearly if ann(LC(f)) = {0}, then apoly(f) = 0. But we also know that LC(f) is a unit
and thus f can be normalized. As a consequence of Lemma 5.13 every G-polynomial of
f reduces to zero.

Algorithm 6.3. (Buchberger’s algorithm for strong Grébner bases over R[X])
The following procedure is analogous to Algorithm 5.11 and involves A-polynomials.

SBBA2

input: Z= (f1, ..., fx) € P, NORMALFORM
output: strong Grobner basis G for Z

0L G={f, ..., fu}

02: £ = {spoly(fi, f;), gpoly(fi, fi)}i<;

03: L= LU {apoly(f:)}:

04: while £ # 0 do

05:  choose h € L

06: L£=L\{h}

07:  h = NorRMALFORrRM(h, G)

08: if h # 0 then

09: L = LU {spoly(g, h),gpoly(g, h) | g € G}
10: L = L U{apoly(h)}
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11: G=GgU{h}
12: end if

13: end while

14: return G

The theoretical background for correctness and termination is given by our considerations
at the start of the chapter and Theorem 5.4, Theorem 5.10. Note that if LC(f) is a non-
trivial zero divisor, then there exists r € R, such that 7 = LC(f) and m { r | m. Let
ra = m for some a € R, such that @R = ann(LC(f)). Let f’ € P be a representative
with f’ = f. Then we compute the S-polynomial of f’ and m over R and obtain

spoly(f’, m) = af’ — LM(f)m = atail(f").

Then spoly(f’, m) = atail(f) = apoly(f) is an A-polynomial of f.

If R is a principal ideal ring, which is not necessarily a domain, then we have the two
following very useful theorems, that allow us to lift results of computations over the finite
ring Z/mZ. This is in general not possible, because information of coefficients is lost
when computing over fields. Therefore, the Chinese remainder theorem or Hensel lifting
cannot be applied. Clearly we need further assumptions on the leading coefficients of the
generating polynomials.

Theorem 6.4.

Let m € R\{0} and Z an ideal of P = R[X]. Let G C P such that 7(G) is a strong Grobner
basis of w(Z) where 7 : P = R[X] = P = (R/mR)[X] is the canonical surjection.
Additionally we assume that m 1 LC(g) | m for every g € G (this means that 7(LC(g)) is
a non-trivial zero divisor in R). Then G U {m} is a strong Grébner basis for Z + mP.

Proof. (cf. [3], Theorem 10)

Clearly G U {m} is a subset of Z+mP. Let f € Z. If f := 7 (f) =0, then m | LT(f). So
we may assume f # 0 and m { LC(f). Then LM(f) = LM(f) and there exists g € G such
that LT(g) | LT(f), because 7(G) is a Grébner basis and we can find a term h € P with
hLT(g) = LT(f). Thus LM(h)LM(g) = LM(f) and 7(hLT(g9)—LT(f)) = 0. Therefore,
we have hLT(g)—LT(f) = ALM(f) for some A € mR and hence LT(g) | LT(f), because
LC(g) | m by our additional assumption and LM(g) | LM(f). In other words G U {m} is
a strong Grobner basis for Z + mP. O

Remark 6.5.
We have the following implications for unitary commutative rings.

field = Euclidean ring = PIR = factorial ring

Especially every irreducible element in a principal ideal ring is prime and we have a unique
prime factorization.
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Theorem 6.6.

Let Z be an ideal of P and a, b, r, s € R such that ab = 0 and a, b coprime with
ar +bs = 1. Let G,, G, be Grobner bases for Z + aP, Z + bP respectively, such that for
every ¢a.; € Go \ R we have a 1 LC(g, ;) | a. Suppose, that the same holds for G,. For
Ga,i € G, and g, ; € G we define

lem(LM(ga,i), LM(gs,;)) lem(LM(ga,:), LM(gs,;)) o
LM(ge,;) LM(ga,:) o

Additionally we assume that LC(g, ;)LC(gs,;) # 0 for all 4, j. Then G := {f; ;}i; is a
strong Groébner basis for 7.

fi,j = arLC(ga,:) b, j + bsLC(gy, ;)

Proof. (cf. [3], Theorem 12)

By our assumptions we have Z = arZ +bsZ = ar(Z+bP) +bs(Z+aP) = ar{Gy) +bs{G,).
Since a and b are coprime and LC(g,, ;) | a, LC(gp, ;) | b, we see that LC(g,,;) and LC(gs, ;)
are coprime as well. Furthermore, we have LC(g,,;)LC(gp, ;)R = LC(gq,:)RNLC(gs, ;)R 2
aR N bR = {0} and thus LT(f; ;) = lem(LM(gq,:), LM(gs,;))LC(ga,:)LC(gs, ;). Now let
f€Z C(Z+aP)N(Z+bP). Then there exist g,; € G, and g, ; € Gp, such that
LT(gn.0) | LT(f) and LT(g, ;) | LT(f). Especially lem(LM(go ), LM(g;.,)) | LM(/) and
LC(ga)LC(gas) = lem(LC(ga1), LC(g5.,) | LO(f). Thus LT(f, ;) | LT(f) and G is a
strong Groébner basis for 7. O

Remark 6.7.
Theorem 6.4 and Theorem 6.6 hold over any principal ideal ring R, but we are especially
interested in the case R = Z/mZ.

The point is that if we have R = Z/mZ in Theorem 6.6, then ab = 0 is equivalent to
m | @'V’ for a’ = a, V' = b. The consequence is the following corollary.

Corollary 6.8.
Let Z be an ideal of P with m = ab such that a and b are coprime in R. Then mR =
aR N bR and we have canonical projections 7 : R[X] — (R/mR)[X], as well as

7o 0 (R/mR)[X] = (aR 4+ OR)/mR[X] — (R/aR)[X]
and
i (R/mR)[X] = (aR+WR)/mR[X]| — (R/VR)[X].

Assume that we have a finite set G, C P, such that m(a) € G,, m,(G,) is a strong Grébner
basis for 7,(Z) and 7(a) { LC(ga.;) | 7(a) for all g, ; € G,\{n(a)}. Let analogously G, C P,
such that m(b) € Gy, my(Gp) is a strong Grobner basis for m,(Z) and w(b) + LC(gy, ;) | 7(b)
for all g, ; € G, \ {m(b)}. We define f; ; similar to Theorem 6.6 over P by

lem(LM(ga,:), LM(gs,;)) lem(LM(ga,:), LM(gb,j))g ,
LM(ge, ;) LM(ga,:) o

Then G = {fi ;}:,; is a strong Grobner basis for 7.

fi,j = m(ar)LC(ga,:) b, + m(bs)LC(gs, ;)
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Proof.
First of all note that by the second isomorphism theorem we have

R/aR = (R/mR)/(m(a)(R/mR)) = R/aR
and
R/bR = (R/mR)/(7(b)(R/mR)) = R/bR.

From this and Theorem 6.4 it follows that G, U {a} = G,, G, U {b} = G, are strong
Grébner basis of Z+aP, Z + bP respectively. Then again using the isomorphism theorem
all conditions of Theorem 6.6 are satisfied and it follows that G is a strong Groébner basis
for Z. O

Given such a factorization of m, we can improve Buchberger’s algorithm with the following
procedure.

Algorithm 6.9. (Mixing two Grébner bases)
The following algorithm computes a strong Grobner basis G as in Corollary 6.8, if the
input sets G,, G, satisfy the assumptions.

Mix

input: G, = {ga,1, - -+ Ga,x} € (R/mR)[X], G = {gv,1, - -, v} C (R/mR)[X] with
m=ab, m:P—P

output: G C (R/mR)[X]

01: G=10

02: for 1 <1<k, 1<j<ldo

lem(LM(gq,:), LM(gs,4))

03:  fi; :=m(au)LC(ga,q) LM (g ;) 9b, j
7-]
lem(LM(gq,:), LM(gs, ;
(o)Ll ) e )
04:  G=GU{f:,} ’
05: end do
06: return g

This is used iteratively in the following version of Buchberger’s algorithm. We also use
the fact that principal ideal rings are factorial.

Algorithm 6.10. (Buchberger’s algorithm for strong Groébner bases over
(R/mR)[X] with known prime factorization)
We can apply Corollary 6.8 iteratively, when we have a prime factorization of m.
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SBBA3

input: Z = (fi(mod m), ..., fr(mod m)) C (R/mR)[X], SBBA2, NORMALFORM
output: strong Grobner basis G for 7

01: m = pi* - - p¢r prime factorization of m

02: for 1 <k <rdo

03: Iy = (fi(mod py), ..., fr(mod pi*)) € (R/pi! R)[X]
04:  Gp = SBBA2(Z;, NORMALFORM)

05: end do

06: £ =1

07: while1</¢<r—1do

08:  Gey1 = MIx(Ge, Geya)

09: (=/(+1

10: end while

11: return G,

The algorithm is correct, if the Grobner bases G computed in line 04 only contain ele-
ments g ; such that pi* + LC(gk,:) | pi*. This holds by the definition of the canonical
projection m; : (R/mR)[X] — (R/pFR)[X] and if we assume, that the leading coeffi-
cients of the elements in Z are zero divisors. Additionally we need that the p;* are coprime,

when the p; are coprime. Assume that p; pjj have a non-trivial common divisor p. Then,

since R is a unique factorization domain, there are ¢;, {; € N, such that p = ph = pﬁ" )
Then p; | p; and p; | p;, because p;, p; are prime. Therefore we can find u, v € R, with
up; = p; and vp; = p;, i.e. uvp; = p; or equivalently, because R is a domain and primes
are not zero divisors, uv = 1. Thus p; and p; are associated and without loss of generality
equal. Altogether we see that the p;’ are coprime. Then all assumptions of Corollary 6.8
are satisfied and we obtain a strong Grobner basis for Z iteratively.

If we are interested in a different factorization of m or cannot obtain a prime factorization,
then we can still compute a Grobner basis as follows.

Let Z = (fi(mod m), ..., fy(mod m)) C (R/mR)[X] be an ideal. We apply SBBA2
to Z and stop at a non-invertible leading coefficient in R /mR. Then there exists ¢ € R
such that m { ¢ | m and ¢(mod m) is such a non-invertible leading coefficient of some
fi(mod m). If we can compute d € R and 2 < ¢ € N, such that m = d* and d | ¢, then we
continue with SBBA2. Otherwise, especially when m is squarefree, we can, according to
[3], find a factorization m = ab with a, b coprime. Then we compute Grébner bases over
R/aR, R/bR with SBBA2 and obtain a Grébner basis for Z using Mix and Corollary
6.8.

SBBA4

input: Z = (fi(mod m), ..., fr(mod m)) C (R/mR)[x], SBBA2, NORMALFORM
output: strong Grobner basis G for 7
01: apply SBBA2 to Z; stop at non-invertible leading coefficient in R/mR
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02: if SBBA in step 1 does not stop then
03: G =SBBA2(Z, NORMALFORM)

04: else

05:  choose ¢ € R, such that ¢(mod m) is a non-invertible leading coefficient
06: if3deR,IeN:m=d', d|cthen

0r: G = SBBA2(Z, NORMALFORM)

08: else

09: m = ab for a, b € R coprime

10: Z, = (fi(mod a), ..., fr(mod a)) C (R/aR)[X]
11: G, = SBBA2(Z,, NORMALFORM)

12: Ty = (fi(mod b), ..., fr(mod b)) C (R/bR)[X]
14: G = M1x(Ga, Gy)

15:  end if

16: end if

17: return G

Example 6.11. (cf. [6], Example 17)
Let m = 5072012170009 and Z = (f; = —4984359602099 + x* — 3y2 — 9z2(mod m), fo =
—1780431462965 + Ty + 5y* + z*(mod m), f3 = —4585397367278 + 2 — 3y* + z —
1223(mod m)) C (Z/mZ)[z, y, z] with lexicographical ordering z < y < z. The prime
factorization of m is given by m = 5412 - 17329489. Computing a Grébner basis for
J = (m, f1, fa, f3) with SBBA yields
G = {5072012170009,

1174872829454 + 121735019622 — 13631656244722% + 165499813745223

+ 9281813080022 — 2397953241992 — 16462385385832°% — 9826869303257

— 17343564324412% — 1928316724538z + 2384106829761~ — 2266219400230~

— 1392454057432 4 8953840683412 4 1619289564282 4 21942046400342'°

— 1243172466690z — 11969099848922'7 + 218,

2247545052503 + y + 788535951374~ + 221423016634222 4 9557101415432

+ 2160238766386z — 24741946925422° — 16847163642782° + 21573707579162"

— 10727257917222% + 11733301065072° — 1057647942280z — 1511353993603 2"

+ 1327624312048 — 5810078141262 + 1772345363132z — 1850005196542

— 15386480345892'6 — 4561605651952'7,

— 899617339822 4 = 4 22090817695542 — 50967545015622 4 5664385340912

+ 1828943883971z — 17784878283592° — 11205291817002° + 12388165522162"

— 18987937432182® + 1286010808749z + 8930199141532' + 1728960555992

+ 1872411543380z + 14203136733222"% — 8804547637642 — 12028670578252"°

— 19775894650472'% — 22109994393492'7}.

Alternatively this basis modulo m (which simply deletes m from G) can be computed over
finite rings using the procedure MIX with a = 5412, b = 17329489.
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7 Non-commutative Grobner bases over Euclidean
domains

In this chapter we will consider non-commutative polynomials over Euclidean domains.
Our main goal is to transfer properties from chapter 5. We are especially interested in
a basic idea for an algorithm, finding or adjusting criteria for critical pairs and giving
an effective method to implement Buchberger’s algorithm in the computer algebra sys-
tem SINGULAR [24]. The problem of applying the statements of the previous chapters
for commutative Grobner basis over Fuclidean domains and principal ideal rings are di-
visibility conditions of type LM(f) | LM(g). We start with the construction of S- and
G-polynomials.

Let R be a Euclidean domain and X a free monoid. We define P = R(X) and P¢ :=
P @ POPP. Then P is a left P-module as we know from chapter 4. The relation ~ is
not needed, since X is free. Let < be a global monomial ordering on X.

Definition 7.1.
Let x, y € X be monomials. We say that x and y have an overlap, if there exist
monomials aj, as € X such that at least one of the following cases holds.

1. za; = asy
2. a1x = yas
3. a1xas =y
4. © = a1yas

Additionally we say that x and y have a non-trivial overlap, if in the first two cases
la1| < |y| and |as| < |x| where | @ | denotes the length of a word (the empty word 1 which
is the unitary element of X has length zero). In the third, respectively fourth case, we say
that = divides y, respectively y divides x. The set of all elements which are divisible by
both x and y will be denoted by cm(z, y). The set of all minimal, non-trivial elements
which are divisible by both = and y will be denoted by lem(z, y), i.e. t € lem(z, y), if and
only if there exist 7., 7, € P° such that ¢t = 7,2 = 7y, representing non-trivial overlaps
of z and y, and if ¢, £ € lem(z, y) with £ = 7t for some 7 € P, thent =fand 7 = 1 ® 1.
If there are only trivial overlaps, then lem(z, y) = ().

Example 7.2.
Let X be the free monoid on the alphabet {a, b, ¢, d, e, f}.

1. x = abed and y = bede have non-trivial overlap in bed (blue) and we have a; =
e, ay = a:
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2. x = bede and y = abed have non-trivial overlap bed (blue) and we have ay = a, as =
e:

3. = bed and y = abcede have non-trivial overlap bed (blue) and ay = a, as = e:

blc|d
alblc|d]|e

4. x = abede and y = bed have non-trivial overlap bed (blue) and we have a1 = a, as =
e:

By the above definition x = y have non-trivial overlap, in fact, the least trivial overlap
there is, with a; = as = 1. Two monomials can have more than one overlap, for example
x = abeded and y = cdedef have non-trivial overlaps in cd (blue) and cded (red)

albleld|c|d alblc|d|c|d
cld|cld|e|f cldlcldlelf

which are both contained in lem(z, y).

We already defined reduction, Grobner representations and Groébner bases for non-
commutative polynomial rings. Here are the “strong” versions for R(X).

Definition 7.3.
Let f, g € P\ {0}, G C P\ {0} be a countable set and Z C P be an ideal. The following

definitions are w.r.t. <.

e We say that ¢ LM-reduces f, if LM(g) divides LM(f) with LM(f) = 7LM(g) for
some 7 € P¢ and there are a # 0 and b < LC(f) (in the Euclidean norm) such that
LC(f) =aLC(g) + b. Then the LM-reduction of f by g is given by

f—arg.
e We say that f has a strong Grobner representation w.r.t. G, if f = > h;g
with m € N, g; € G, h; € P° and there exists a unique 1 < j < m such that
LM(f) = LM(h;g;) and LM(f) > LM(h;g;) for all i # j with h; # 0.

e G is called a strong Grobner basis for Z, if G is a Grobner basis for Z and for all
'€ I\ {0} there exists ¢ € G, such that LT(¢) divides LT(f").
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Definition 7.4.

Let f, g € P\ {0}. There exist monomial elements 7, 7, € P° such that 7,LM(f) =
7,LM(g) € em(LM(f), LM(g)). Let ay, ag4, b, by € R be defined as in 5.5. Then an
S-polynomial of f and g is defined as

spoly(f, g) == asrsf — ay7,9
and a G-polynomial of f and g is defined as

gpoly(f, g) == byrsf + by7y9.

Theorem 7.5.
Let G C P\ {0} and {0} # Z C P. The following are equivalent.

1. G is a strong Grobner basis for Z.
2. Every f € 7\ {0} has a strong Grébner representation w.r.t. G.

3. Every f € P\ {0} has a unique remainder after reduction by G.

Proof.

The proof is analogous to Theorem 5.4 for the commutative case but with the replacement
of h; in “1. = 2.” by h; € P such that LM(h;)LM(g;) = LM(f;—1). Moreover, we replace
s; € P by o; € P¢ for “3. = 2.” and, therefore, we go through this part again.

Let f € T be reducing uniquely to zero w.r.t. G. Thus we can write f = >, h;g; with
max; <{LM(h;g;)} =t := LM(f). This is a Grobner representation and we need to show
that card({¢ | LM(h;g;) = t}) = 1. Suppose it is bigger than one. Since < and the
Euclidean norm are well orderings, we can assume additionally that ¢ is minimal among
all monomials ¢ with the property card({i | LM(h;g;) = t}) > 1 and ¢ := LC(f) is
minimal among all coefficients for which there is no strong Grobner representation with
leading monomial ¢. Also without loss of generality let {i | LM(h;g;) =t} = {1, ..., k}
and b = Y. \,LC(g;) the Bézout identity for the greatest common divisor of all leading
coefficients which can be obtained from the extended Euclidean algorithm. Especially we
have b | ¢, say ¢ = db. Let o; € P° with o;LM(g;) =t for 1 <i <k and g = )}, 0;\ig;.
By this construction we have LT (g) = bt. Suppose b = ¢. But since |b| < |[LC(h;g;)| < |¢]
this implies & = 1, thus || < |¢|. As ¢ was chosen to be minimal there is a strong
Grébner representation of g, say g = 3., h;g; with LM(h;g;) = t. Since ¢ = db we have
LM(f—dg) < t and, therefore, (f —dg) has a strong Grobner representation. In particular
f has a strong Grobner representation. O]

So far everything seems to work out as in chapter 5. We consider some examples to see
significant differences.

Example 7.6.
Let f = 2xy, g = 3yz € Z{x, y, z) where X = (z, y, 2) is a free monoid. Usually we
would compute an S-polynomial (which is zero) and a G-polynomial

gpoly(f, g) == (=1)-2zy-z+1 -z -3yz = zyz

o4



and add them to {f, g} to obtain a strong Grobner basis for Z = (f, g) C P. But clearly

gpoly'(f, g) := (=1) - 22y - w - yz +1- 2y - w - 3yz = rywyz

is also a G-polynomial of f, g for every w € X and must be added to the basis. In other
words there is no finite Grobner basis for Z and we have to be satisfied with computing
up to a fixed maximal leading monomial. Note that in the first case we computed a
G-polynomial in the canonical way by looking for a non-trivial overlap of xy and yz. In
the case of gpoly’ we ignored this overlap. In the commutative case this is irrelevant,
because then gpoly(f, g) | gpoly’(f, g). In the field case this is also irrelevant, because
then LT(f) | LT(gpoly'(f, g)). A similar problem occurs with S-polynomials. Let f =
2xy+x, g = 3yz+z. Then spoly(f, g) = 3fz—2xg = 3xz—2xz = zz is an S-polynomial
of f and g but so is

spoly'(f, g) := 3fwyz — 2xywg = 3rwyz — 2rywz
as well for any monomial w € X. Now we can reduce spoly’(f, g) with f and g to
(spoly'(f, g) — zwg) + fwz = —2xywz + fwz = rwz

which does not reduce any further w.r.t {f, g} and also w.r.t. spoly(f, g) = xz in general.
Therefore, we have to add spoly’(f, g) to the basis.
But this is not enough. For f = 2zy + x we also see that

spoly’(f, f) := fwzry — zywf = zwry — rywr # 0

is an S-polynomial of f with itself and does not reduce any further, because the leading
coefficient of f is not a unit and we need LM(f)wLM(f) € em(LM(f), LM(f)), although
it is clearly not contained in lem(LM(f), LM(f)). So even principal ideals do not have
finite strong Grobner bases in general. This case of S-polynomials does not occur over
fields as well and is completely new for non-commutative polynomials over R.

Also note that we do not consider any further extensions of the leading monomials, mean-
ing that the S- and G-polynomial where we construct LM(f)wLM(g) make any further
overlaps aLM(f)wLM(g)b for a, b € X redundant. Therefore, in the definition of lem(z, y)
we attached importance to the minimality which is of course motivated by the definition
of a least common multiple in the commutative case.

The previous example shows that we have to consider all possible S- and G-polynomials
which are infinitely many. Moreover, the set cm(LM(f), LM(g)) contains too many el-
ements that are redundant whereas the set lem(LM(f), LM(g)) is too small for overlap
relations of leading monomials. The following definition is made to distinguish two types
of S- and G-polynomials.
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Definition 7.7.
Let f, g € P\ {0} and ay, a4, by, b, as in Definition 5.5. We consider the following cases.

1. If LM(f) and LM(g) have a mnon-trivial overlap, then there exist
t € lem(LM(f), LM(g)) and 74, 7, € P°, such that t = 7,LM(f) = 7,LM(g).
Furthermore, we require that 7, = 1@ t;, 7, =, @lor 7, =1® 1, 7, =, ® t; for
monomials ¢y, t,, t, € X with [t¢| < [LM(g)], [t,l, [t;] < |LM(f)|. We define a first
type S-polynomial of f and g w.r.t. t as

spolyi (f, 9) = as7f — ayyg

and a first type G-polynomial of f and g w.r.t. t as

gpolyi (f, ) = byTpf + byTyg.

If such t;, t, do not exist then we set spoly’ (f, g) := gpoly}(f, g) := 0. Since two
monomials may have several non-trivial overlaps, these t, t,, t; are not unique. To
be more precise, this results from P not being a unique factorization domain.

2. For any w € X we define the second type S-polynomial of f and g w.r.t. w by

spolyy (f, g) := ag fwLM(g) — a,LM(f)wg

and the second type G-polynomial of f and g w.r.t. w as

gpolyy (f, g) := by fwLM(g) + byLM(f)wg.

Remark 7.8.

Clearly, it only makes sense to consider first type S- and G-polynomials if there is a
non-trivial overlap of the leading monomials. However, as Example 7.6 shows we al-
ways need to consider second type S- and G-polynomials. For any w € X we have
LM(f)wLM(g) € em(LM(f), LM(g)) and LM(g)wLM(f) € em(LM(f), LM(g)), which
are distinct in general. Therefore, we need to consider both spolyy'(f, ¢) and spolyy (g, f)
and the same holds for second type G-polynomials. Also note that the set of first type S-
and G-polynomials is finite, because our monomial ordering is a well ordering, whereas the
set of second type S- and G-polynomials is infinite, at least on the free monoid. Therefore,
we need to fix an upper bound for computations.

It is also important to point out that the elements 7;, 7, are not uniquely determined.
Take for example f = 2zyx +y, g = 3x + 1. Then ¢t := LM(f) = xyLM(g) but also
t = LM(g)yz and thus spoly}(f, g) = —3f + 2gyr = 2yx — 3y and (spoly})'(f, g) =
—3f 4+ 2xyg = 2xy — 3y are both first type S-polynomials with different leading monomi-
als.

In the following we will recall the criteria for critical pairs from chapter 5 and see which
can be applied over R(X) and which can not.
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Remark 7.9.

First of all we should consider the case where t := LM( f) is divisible by (or is even equal
to) LM(g). Then lem(LM(f), LM(g)) contains exactly one element, namely ¢, because
it is the only minimal element that is divisible by both leading monomials. Therefore,
spoly! (f, g) and gpoly’, (f, g) are the only first type S- and G-polynomials. However, these
are not uniquely determined, we might have more overlap relations of LM(f), LM(g) and
we still need second type S-polynomials.

Remark 7.10.

Lemma 5.13 can be applied to both first and second type G-polynomials. Recall that
gpoly(f, g) reduces to zero w.r.t. {f, g} in the commutative case if LC(f) | LC(g). In the
non-commutative case we also see that since by = 1, b, = 0 we have that gpoly’ (f, g) =
7¢f and gpolyy (f, g) = fwLM(g) reduce to zero w.r.t f for any ¢ € lem(LM(f), LM(g))
and w € X.

Remark 7.11.

Lemma 5.14 is expected to be applicable to second type S-polynomials. Recall that in the
commutative case spoly(f, g) reduces to zero w.r.t. {f, g} if LC(f), LC(g) are coprime
and LM(f), LM(g) are coprime. Now let LC(f), LC(g) be coprime and LM(f), LM(g)
have only trivial overlaps. Then for any w € X we have

spolyy (f, g) = LC(g) fwLM(g) — LC(f)LM(f)wg
= fw(g — tail(g))wf — (f — tail(f))wg
= tail(f)wg — fwtail(g).

Now we write r := tail(f), s := tail(g) and suppose that we have cancellation of leading
terms, i.e.

LM(rwg) = LM(r)wLM(g) = LM(f)wLM(s) = LM(fws).

LM(T)| w | LM(g)
LM(f) | w |LM(S)

By definition we have that LM(f) > LM(r) and thus |[LM(f)| > |LM(r)| for global
monomial orderings, since in the above case LM(r) divides LM(f) from the left. Moreover,
we require that ¢y := |[LM(f)| — |[LM(r)] = |LM(g)| — |LM(s)| =: ¢, and thus with
(=1l =1L, if lw| < ¢ then we would have a non-trivial overlap, a contradiction. Thus
spolys (f, g) only reduces not to zero if ¢ is well-defined, |w| > ¢, w has non-canonical
self-overlap of length |w| — ¢, there exist monomials =, y € X, such that |x| = |y|,
LM(r)z = LM(f), LM(g) = yLM(f) and LC(rg) = LC(fs). Furthermore, the latter
demands that LC(f) | LC(r) and LC(g) | LC(s), because LC(f), LC(g) are coprime.
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Example 7.12.
Let f = 2zyz + 4oy + 1, g = 3zaxy + 62y and w = 1. We choose the graded left
lexicographical ordering. Then LC(f), LC(g) are coprime and thus

spolys(f, g) = 3zxy,

which LM-reduces to 6zxy # 0 w.r.t. g and can not be any further LM-reduced w.r.t.
{f, g}. Soif |w| < ¢; = {,, we need that LM(f),LM(g) have no overlap. Now take
w = z. Then |w| ={; = ¢, =1 and

spoly5(f, g) = 3zzxy,

which LM reduces to 12zy # 0 w.r.t g and can not be any further LM-reduced w.r.t.
{f, g}. However, it reduces to zero w.r.t. spolys(f, g).

We consider further situation where we might find applications for criteria.

Example 7.13.

If LM(f) and LM(g) do not overlap and the leading coefficients are not coprime, i.e.
lem(LC(f), LC(g)) # 1, then we can make no statement about reduction. This only
applies to second type S- and G-polynomials. Take for example f = 4ay + x, g =
62y + 2z € Z(X) = Z{x, y, z) in the graded left lexicographical ordering with x > y > z.
Then spolyy(f, g) = 3fzy — 2zyg = 3xzy — 2zyz and gpolyy(f, g) = (—1)fzy + layg =
2xyzy+xyz —xzy both do not reduce any further and thus must be added to the Grobner
basis just as any other second type S- and G-polynomial.

Example 7.14.

Also for first type S- and G-polynomials there can be no statement made if the leading
coefficients are not coprime. For example in the case of f = 4xy+vy, g = 6yz +y we have
spoly1”*(f, g) = 3fz—2xg = 3yz—2xy and gpoly1?*(f, g) = (1) fz+1xg = 2xyz—yz+ay
which do not reduce any further.

Remark 7.15.

A special case occurs if one of the polynomials is normalized. Then according to Remark
7.10 every G-polynomial reduces to zero, but by Remark 7.11 not every second type
S-polynomial must reduce to zero.

Remark 7.16.

We can also use Lemma 5.22. Recall that the pair {f, g} can be replaced in the commu-
tative case by {spoly(f, g), gpoly(f, ¢g)} if t = LM(f) = LM(g). Now if LM(f) = LM(g)
then in the definition of first type S- and G-polynomials we have 7y = 7, = 1 ® 1 and,
therefore, spoly’ (f, g) = a;f — a,g and gpoly’(f, g) = by f + b,g. The rest of the proof
is analogous to Lemma 5.22; because the hereby constructed matrix is an invertible R-
matrix.
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Remark 7.17.

What about the chain criterion for S-polynomials? Essential for the proof of Lemma 5.16
was Remark 5.15. For a, b, ¢ € P monomials let a divide ¢ € cm(b, ¢). Then there exists
d € P¢ with da = t and especially a and b divide lem(b, ¢). We have to consider two cases.
If @ and b have non-trivial overlap then ¢ is divisible by some s € cm(a, b). Therefore,
the chain criterion can only be applied to first type S-polynomials in this case. If on the
other hand a and b only have trivial overlap then there exists a unique monomial w € P
and 7 € P°¢ with Tawb =t or Tbwa = t. Thus in the second case the chain criterion can
only be applied to second type S-polynomials w.r.t. w. This covers the conditions for the
following.

Now let G CPand f, g, h € G. Fora, b € {f, g, h} we fix T,;; € lem(LM(a), LM(b)) and
choose 7, € P¢ with 7,,LM(a) = Ty There exists 1, € P€ such that 7,,LM(b) = T,
i.e. we need Ty, = Tp,. Furthermore, let

1. Thg = Tyn overlap both Ty and T, with 04T = The and 05Tyr = Ty, for some
(59]0, 6hf € Pe,

2. LC(f) | lem(LC(g), LC(g)) and

3. spoly1’?(f, g) and spoly,’"(f, h) have strong Grébner representations w.r.t. G.

Then with ¢4, as in the proof of Lemma 5.16 we have

Ch, T Cgh T
—9. 545 spolyy " (f, h) — 26,5 spoly,”* (f, 9)
Chy Cof

Ch, Cgh
=005 (conTynf — chgThrh) — ==0ns(CraTrof — CorTyrg)
Chf Cqf

ChgCth CqhC
=CghOnfTgrg — ChgOgrTnsh + ( L T Lo & 5thfg> f
Chf Cqf

and with 7,,LM(h) = T}y = 0yfThs = dgsmnfLM(h) we have 8,67, = 7, in P€. Analo-
gously 0p¢74¢ = 74n and thus the first term equals Spolle“’h (g, h). Moreover, we already
know from the proof of Lemma 5.16 that

CngCfh _ CghCfg

Chf Cyf

Finally
OgsTrnLM(f) = 0gsTn = 645 Ths = Thg = Tyn = SnsTys = OnsTry = OnsTra LM(S)

implies 04¢7fn = OnfTrg in P° and, therefore,

Ch, T Cgh T T
ﬁ%f spoly,”" (f, h) — ééhf spoly,”*(f, g) = spoly;”"(g, h)

which shows that spollegh (g, h) has a strong Grobner representation w.r.t. G. Clearly
this also works for second type S-polynomials spolys (g, k) or spolys (h, g) if we choose w
or w such that LM(g)wLM(h) = T, or LM(h)WLM(g) = Th,.
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Remark 7.18.
We have a similar criterion for G-polynomials. Let G C P and f, g, h € G. We use the
above notation and assumptions for Ty, and 7. Let

1. Thg = Ty overlap both Ty and T, with 0,413 = The and 05Ty = Ty, for some
(5gf, (Shf € P¢ and
ged(LC(g), LC(9))
LC(f)

We will show that gpoly(g, k) has a strong Grébner representation w.r.t. G. First of all
note that

2. LC(f) | ged(LC(g), LC(g)) with d :=

gpoly(g, h) = byTgng + bamhgh = ged(LC(g), LC(h)) Ty, + byTyn tail(g) + by, tail(h),

C C
spoly(f, g) = EC(?)) T — Topg = ECE% Trg tail(f) — 74r tail(g) and
LC LC(h)

spoly(f, h) = LC(f; Trnf — Thph = mTfh tail(f) — 7 tail(h).

Since Ty, divides T}y, there exists w € P¢ with wLM(f) = T,. Then
wLM(f) = Tgh = 6ngfh = 5ngthM(f).

Hence w = 4574, and analogously w = 0y, ¢7¢,.
Moreover, dwLC(f)LM(f) = ged(LC(g), LC(h))T,, and finally we obtain

gpoly(g, h) — dwf + bydny spoly(f, g) + budys spoly(f, h)
—ng(LC( ) LC(h)) gh + b 9 Tgh tall( ) + thhg tall(h)
— (ged(LC(g), LC(h))Ty, + dw tail(f))

LC :

+ byOns (LCE? Trg tail(f) — 74¢ taﬂ(g))
LC(h) :

by s L) Tfh tail(f) — 7y taﬂ(h))

= by, tail(g) + by, tail(h) — dw tail( f)

LC
+ b ( )5 hfTfg tail(f) - bg 5hf7_gf tail(g)
ILC(f) YLD
bh LC(h) 5gf7—fh tall(f) — bh 5gf7_hf taﬂ(h)

=0hfTtg =Thg

= (bgLC(I.JQé?})LC<h) 5thfg — dw) tall(f)

= d((;thfg — w) tall(f)
=0.
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Thus

gpoly(g, h) = dwf — byénsspoly(f, g) — brdysspoly(f, h)

is a strong Grobner representation of gpoly(g, h).

We conclude that the criteria for S- and G-polynomials from chapter 5 can also be applied
in the non-commutative case with modifications, if we distinguish between first and sec-
ond type S- and G-polynomials. The chain criteria require adjusted conditions to apply
Remark 5.15. Computations will show how hard these requirements are to be fulfilled
compared to the commutative case.

The following strong normal form algorithm uses LM-reductions similar to Algorithm 5.9
but now for non-commutative polynomials and can be compared to the algorithm “NF”
in [4], pp. 4-5.

Algorithm 7.19. (Normal form algorithm over R(X))
We redefine the normal form algorithm from chapter 5 to work over non-commutative
polynomial rings.

NORMALFORM

input: f € P, G C G finite and partially ordered

output: normal form of f w.rt. G

01: h=f

02: while 7 # 0 and G, = {g € G | g LM-reduces h} # () do

03:  choose g € G,

04:  choose a € R\ {0}, b € R with LC(h) = aLC(g) + b and |b| < |[LC(h)|
05:  choose 7 € P¢ with LM(h) = 7TLM(g)

06:  h = h —arg LM-reduction of h by g

07: end while

08: return h

Termination and Correctness is analogous to the commutative case of strong normal forms.

A finite set G C P is called degree-bounded strong Groébner basis for an ideal Z, if
there is a Grobner basis G’ for Z such that G C G’ contains precisely the elements of G’
with degree smaller or equal to d for some d € N.
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Algorithm 7.20. (Buchberger’s algorithm for degree-bounded strong Grébner
bases over R(X))

The following algorithm computes a degree-bounded strong Groébner basis for an input
ideal.

SBBA

input: Z=(f1, ..., fr) CR(X), d € N, NORMALFORM
output: bounded strong Grobner basis G for 7
01: G={f1, ..., fu}
02: L=10
03: for 1 <:<j<kdo
04:  compute lem(LM(f;), LM(f;))
05:  for t € lem(LM(f;), LM(f;)) with [¢{| < d do
06: L= LU{spolyl(fi, f;), gpoly’(fi f;)}
U {spoly\(f;, fi), gpolyi(fs, fi)}
07: end do

08:  for w € X with deg(fiwf;) < d do

09: L = LU {spolyy (fi, f;), gpolys (fi, f;)}
U {spolyy (. fi), gpolys'(f;, fi)}

10:  end do

11: end do

12: while £ # () do

13:  choose h € L

14: L=L\{h}

15:  h = NOorRMALFORrRM(h, G)

16:  if h # 0 then

17: G=GgU{h}

18: for g € G do

19: compute lem(LM(g), LM(h))

20: for t € lem(LM(g), LM(h)) with |t| < d do

21: L = LU {spoly}(g, h), gpoly' (g, h)}
U {spoly! (%, g), gpoly;(h, g)}

22: end do

23: for w € X with deg(gwh) < d do

24: L = LU {spoly; (g, h), gpolys (g, h)}
U {spolyy (h, g), gpolyy'(h, g)}

25: end do

26: end do

27: end if

28: end while

29: return G

Compared to Algorithm 5.11 there are two significant changes. For each pair we must
consider multiple S- and G-polynomials. We do this with for-loops in lines 05, 08, 20
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and 23. Secondly we compute S-polynomials of polynomials with themselves. Therefore,
we have ¢ < j in line 03 and we add h to G in line 17 before computing the S- and
G-polynomials. Note that G-polynomials of elements with themselves are always redun-
dant and, therefore, must not be added. We overlooked this in the above algorithm for
readability. It should also be mentioned that the algorithm computes a Grébner basis for
7 if the monomials w in lines 08 and 23 are chosen freely without an upper bound. Of
course then the procedure does not terminate.

For the algorithm to terminate we need the set £ to become empty eventually. This
happens if and only if after finitely many steps every S- and G-polynomial based on any
combination of leading terms has normal form zero w.r.t G, i.e. there exists a chain of
LM-reductions such that the current S- or G-polynomial reduces to zero. However, LM-
reductions only take place when we have reducing polynomials of equal or smaller degree
and all of these have already been computed at this point, due to our choice of a graded
global monomial ordering. Thus it is not possible that we obtain elements which can not
be reduced unless we remove the degree-bound. Therefore, the algorithm terminates.

For the correctness of the algorithm we still need a version of Buchberger’s criterion as
in Theorem 5.10. More precisely we want G to be a Grobner basis for Z if and only if for
every pair f, g € G, where f = g is allowed, their S- and G-polynomials reduce to zero.
Moreover, we only want to consider first and second type S- and G-polynomials i.e. only
use t € ecm(LM(f), LM(g)) with

M(f)ty = t,LM(g),
= LM(f) = t,LM(g)t,
f) = LM(g)t; or
(

3.t = t,;LM(
4.t = t;LM(f)t} = LM(g)

for ¢y, t%, t,, t;, € X. This excludes all cases where ¢ is not minimal, i.e. ¢ = w;t'w; for
wi, we € X and t’ satisfying one of the above cases. Moreover, we noted in chapter 4,
Remark 4.15, that for a basis of the left syzygy module (which is not finitely generated

in general) we may use syzygies, that have exactly two non-zero entries.

Lemma 7.21.
Let G C P\ {0}. Then G is a strong Grobner basis for Z := (G), if and only if for every
pair f, g € G their first and second type S- and G-polynomials reduce to zero w.r.t. G.

Proof.

The proof is similar to the commutative case. The “only if” part follows immediately
from Theorem 7.5.

For “if”let 0 # f € (G) = Z with f = >, h;g; for some h; € P°. We set t := max(LM(h;g;)
and M := {i € N | LM(h;g;) = t}. Clearly LM(f) < t and we may assume that
there is no other representation of f where ¢ is smaller. Without loss of generality let
M = {1, ..., m}. Moreover, since the Euclidean norm induces a well ordering, we can
choose a representation where » " |LC(h;)LC(g;)| is minimal w.r.t. ¢ If M contains
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exactly one element, then ¢ = LM(f) and we have a strong standard representation
of f wr.t. G. Suppose otherwise that card(M) > 1. Then t > LM(f). Note that
t = LM(h;g;) = LM(h;)LM(g;) for i < m. Then there exist monomials ¢y, ¢}, ts, th € X,
such that ¢t = t;LM(gy)t] = t2L.M(go)t5. This induces an overlap relation of the leading
monomials, because then there exist sy, s, so, s, € X such that

T :=LM(g1)s}; = s2LM(g2),
T :=LM(g1) = s5LM(g2)s5,

T := 51LM(g1) = LM(g2)s), or

T := s;LM(g1)s} = LM(g2)

e

and t = 77T for some monomial 7 € P¢. Moreover, let 7, 7 result from sy, s, so, s,

such that 7T = LM(g;), 21T = LM(g). Furthermore, let
_ lem(LC(g1), LC(g2)) ~_ lem(LC(g1), LC(g2))
ay = , Qg 1=
LC(g1) LC(g2)

d := ged(LC(g1), LC(g2)) = 01LC(g1) + b2LC(g2) € R, the Bézout identity for the lead-
ing coefficients. Now if T" corresponds to a non-trivial overlap, then we can compute

spoly] (g1, g2), gpoly] (g1, g2) or spolyi (g2, g1), spoly] (g2, g1), respectively. Otherwise
there exists w € X, such that 7' = LM(g;)wLM(gs) or T = LM(g2)wLM(g1). In this

case we are interested in spolyy (g1, ¢92), gpolyy (g1, g2) or spolyy(gs, g1), spolys (g2, g1),
respectively. Anyway this shows that
spoly(g1, g2) := a17T191 — a2T2g>

and

gpoly (g1, g2) := biT1g1 + baTags
are first or second type S- and G-polynomials and LM(hy) = 771, LM(hs) = 772. Analo-
gous to the proof of Theorem 5.10 there exists a, b € R \ {0} such that LC(h,)LC(g1) +
LC(hy)LC(gs) = ad and LC(hy) = aby 4 bay, LC(hy) = aby — bay. Then since |a;LC(g;) +
as.C(g2)| > 0 and by the triangle inequality we have
[ILC(h1)LC(g1)] + [LC(h2)LC(g2)]

=|(aby + ba1)LC(g1)| + [(aby — baz)LC(g2)|

>|abiLC(g1)| + [ba1LC(g1)| + |absLC(g2)| + |basLC(g2)|

>[abiLC(g1)] + |ab2LC(g2)|

Z\ablLC(gl) + abQLC(gz)’

=|ad],
thus |ad| < [LC(h1)LC(g1)| + |LC(ha)LC(g2)|. Furthermore, we have

h1g1 4+ hage =(LC(h1)LM(hy) tail(h1))g1 + (LC(he)LM(hs) tail(hz))gs
=(aby + bay)TT191 + tail(hy)g1 + (aby — bag)TT2ge + tail(hs)g:
=at(b17191 + baTag2) + b7 (a17191 — asTago) + tail(hy) gy + tail(hs)g:
=at gpoly(g1, g2) + brspoly(gi, g2) + tail(h1)g1 + tail(h2)g:.
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Since the S- and the G-polynomial are of first or second type they reduce to zero w.r.t.
G. Hence we can write higy + hogs = Zj hg; for b € P¢ and define M’ := {j € N |
LM(h/g;) = t}. Since LM(7spoly(g1, g2)) < t, LM(tail(h1)g1) < t and LM(tail(ha)g1) < t

we have

D LC(R))LC(gy)]

JjeM’
= > [LC(H,g))]
JjeM’
=|LC(dr gpoly (g1, g2))|
=lad|
<|LC(h1)LC(g1)| + |LC(he)LC(g2)],

which contradicts our assumption that the leading coefficient of our original representation
are minimal. Therefore, M contains exactly one element and thus we have a strong
Grobner representation of f w.r.t. G, i.e. G is a strong Grobner basis for Z. n

This is similar to a statement over fields which can be found in [12] (chapter 1.3.1, Lemma
1.45). The point is that these overlap relations or “obstructions” ¢ LM(f)t} = t,LM(g)t,
correspond to S- and G-polynomials up to coefficients. But since the coefficients are
uniquely determined by f and g and we compute S- and G-polynomials for all pairs, we do
not loose any information. Now let 7y = t; @1}, 7, = t, @1, € P, t € cm(LM(f), LM(g))
with ¢ = 7/ LM(f) = 7,LM(g). Then there exists a t' € cm(LM(f), LM(g)) that satisfies
one of the above four cases 1. — 4. and 7, 74, 7, € P such that ¢t = 7t = 7,LM(f) =
7,LM(g) and 74 = 77}, 7, = 77,. Let

spoly(f, g) = ay1rf — ag7y9 gpoly(f, g) = by7sf + byTyyg
spoly’(f, g) = ay7if — ag7,9 gpoly'(f, ) = byif + byTyg

be the corresponding S- and G-polynomials. Clearly spoly’(f, g), gpoly'(f, g) are first
or second type S- and G-polynomials and we have spoly(f, g) = 7spoly’(f, g) and
gpoly(f, g) = Tegpoly’(f, g). Therefore, if spoly’(f, g), gpoly’(f, g) reduce to zero w.r.t.
G, then so do spoly(f, g) and gpoly(f, g).

Before we describe a method to implement this algorithm in the computer algebra system
SINGULAR [24] we should address the necessity of second type S- and G-polynomials. A
question that arises is if gpolys (f, g) may be redundant for |w| high enough, i.e. if there
is w’ with |w’| < |w| such that LM(gpoly? (f, g)) divides LM(gpoly?(f, g)). We consider
an example to visualize this.

Example 7.22.
For n € Ny let X,, € X be the set of monomials in X of length n. If X is finite, then
clearly card(X,) = (card(X))™ is the cardinality of X,.

o Let f =4x, g =6y € Z(x, y). Then 2zy is a G-polynomial of f and g and divides
every other G-polynomial 2zwy for a monomial w € (z, y), because either w starts
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with y or ends with x or otherwise w must contain (i.e. is divisible by) xy. Similarly
2yx is a G-polynomial of g and f and divides every other G-polynomial 2ywzx. So in
this particular case {4z, 6y, 2xy, 2yx} is a finite strong Grobner basis for the ideal
(f, 9)-

Observation: Note that (4z, 6y) = (2) - (2z, 3y) and a strong Grobner basis for
(2x, 3y) is given by {2z, 3y, xy, yx} with {4z, 6y, 2zy, 2yz} = 2-{2z, 3y, zy, yz}.
This tells us that our problem with Grobner basis over rings results from the coef-
ficients in (2z, 3y) and not from the greatest common divisor of the leading coef-
ficients. We, therefore, proceed with polynomials that have coprime leading coeffi-
cients.

e Now let f = 2z, 9 = 3y € Z(z,y, z). Then xy is a G-polynomial of f and g
and according to the algorithm we compute every other second type G-polynomial
gpolys (f, g) = xwy for w € (x, y, z). But both xzy and xyy are divided by zy
and, therefore, the only necessary second type G-polynomial with |w| = 1 is zzy.
In a different notation this means that the monomial set xX;y contains all three
second type G-polynomials of f and g but only one that is not reducible. In fact,
it is easy to see that all G-polynomials in x.X|,,y are redundant except

TWY =T 2%
Y \ , Y

lw| times

for every w € X. In numbers this means that X, contains nine elements but eight
are redundant, X3 contains 27 elements but 26 of them are redundant, etc. We have
the analogous statement for the G-polynomials ywz for w € X.

e A less trivial example can be found when looking at f = 2zy, g = 32z € Z{z, y, z).
Then gpolys (f, g) = zywzxz for w € (z, y, z) and

ryXorz = {xyxz}
contains one element and it is not any further reducible. Next
ryXixz = {xyxrz, ryyxz, xyzez}
contains three elements of which none are further reducible. For |w| = 2 the set
ryXoxz = {xyxarz, vyryrz, ryrzez, ryyrrz, ...}

contains nine elements of which two are reducible namely xyxyxrz and xyxzzz. Note
that the elements of xyX;zz can if possible only be reduced by elements of zyX;zz
with ¢ < 7 — 2. One can check that xyXsxz contains 27 elements of which 12
are reducible, xyX 2z contains 81 elements of which 50 are reducible and zyXsxz
contains 243 elements of which 105 are reducible.

One might conclude that the more elements X contains and the larger the degree of f and
g, the less elements are contained in xyX|,zz which are reducible. Thus we have more
necessary second type G-polynomials, which has to be checked with further computations.
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The number of reducible elements is not trivial to compute and depends on |w|, the degree
of the input polynomials and their leading monomials and the monoid X itself. Therefore,
to predict whether gpolyy is necessary is expected to be just as hard as letting the normal
form handle the reductions automatically as it is done in Algorithm 7.20.

In A.2 we give an example for a computation of a Grobner basis for an ideal in the field
case, the commutative case and our current case, non-commutative with coefficients in R.

We give some more examples for Grobner basis that have been computed up to a certain
degree.

Example 7.23. (cf. [23], Examples 1-4)
Let P = Z(x, y, z) with the graded left lexicographical ordering and = > y > z.

e We consider the ideal Z = (f; = yr —3xy—3z, fo = ze —2xz+vy, f3=2y—yz—x).
Then Z has an infinite Grobner basis and the elements, which can be subsequently
constructed, are

G={f1, f2, f3,
6yz + 3z, 9z — 3y, 12zy + 92, 12y% — 2722, 22 + 2y — 622,
923 — 302y — 21z, 4y> + 9yz? + 3y, day® + 3yz + 3z, 3xyz — 3y* + 922
3yz® — 90xy?3x2? — 3yz — 36z, 2y° 2 — 3xy® + 3yz, vy’z — 3y — 3xz,
223 — 2oyt — 3y32 — 3y + xy? — 3yz, xydz + 3yt — 6y,
oytz + oyt + 227 P2 4 2 — By, aytr — o8 + 3yt L 3.
However, one can show that Z contains an element xy’z + lLo.t. for every 2 <i € N

and these are the only polynomials that have to be added to G in order to obtain a
Grobner basis for 7.

e letZ=(fi=yr—3zy—=z, fo =20 —xz+vy, fs =2y —yz—x). Then Z has a
finite strong Grobner basis, namely

G = {f1, fo, f3, Swy + 22, 4wz, —2y, 4yz + 2z, 22% — 297, 4y* — 227, 22° — 22y}

e Another ideal that has a finite Grobner basis is Z = (f; = yx — 3y, 20 + y?, 2y —
yz + 2%). A Grobner basis for Z is given by

g = {f17 f27 f37 2y3 + y2Z - 23/22 + 2237 143123 - 28247
y22? — 4y + 62, 2Tay? s — Bdayz? + bda2® + yt, 142°,
2uzt —62°, ylz, P, 2ay2® — duz?, 27xyP 2, 22°, 2x25}.

There are two problems with our above considerations. First of all we can only com-
pute up to a certain upper bound for the length of leading monomials, because Grobner
bases over P are usually infinite. Secondly most implementations in SINGULAR [24] and
other computer algebra systems are for commutative polynomials only. However, in 2009
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Levandovskyy and La Scala developed a subsystem SINGULAR:LETTERPLACE [25] in [5],
that uses commutative data structures and parts of Grobner bases over the free algebra

Q(X). Every element up to a degree d of the polynomial ring P = R{(zy, ..., z,) cor-
responds to an element of LP := R[(xy | 1), ..., (1 | d), (za | 1), ..., (2 | d), ...,
(xn | 1), ..., (zn | d)] where for a monomial (z; | p) € LP the letter i refers to the

element x; € P and the place p stands for its position in a monomial.

Example 7.24.

The monomial zyz4x321 € P corresponds to (zq | 1)(xy | 2)(x3 | 3)(x1 | 4) € LP which
is the same as (x; | 1)(z1 | 4)(z3 | 3)(z4 | 2), because LP is commutative. On the other
hand there are no elements in P which correspond to (z7 | 1)(x2 | 1) (because the position
p = 1 is overdetermined) or to (z7 | 1)(z2 | 3) (because the position p = 2 is empty). By
convention the unitary element 1 € X corresponds to the 1-monomial in LP.

The following definitions and considerations are analogous to [5] and [11].

We define a map ¢ : P — LP with a;, -+ -2, — (x5, | 1)+ (24, | k) for & < d. Clearly
this map is injective and in every element of the image of a monomial the positions
1 < p < k occur exactly once.

Definition 7.25.

The commutative polynomial ring LP is called Letterplace ring. The monomials con-
tained in im(¢), including the 1-monomial, are called Letterplace monomials. A finite
R-linear combination of Letterplace monomials is called a Letterplace polynomial.

Since the Letterplace ring requires an upper bound for the length of monomials just as we
need an upper bound for computations in Buchberger’s algorithm 7.20, we will attempt
to apply the idea of SINGULAR:LETTERPLACE [25] to R(X).

The product of two monomials in P is also a monomial. This is trivial but on the other
hand ¢ is not a homomorphism, i.e. the product of two Letterplace polynomials is not a
Letterplace monomial in general. Also we have to transfer the concept of overlaps to LP
and, most importantly, we need a way to construct a monomial ordering on LP based on
a given monomial ordering on P.

For a Letterplace monomial = (x;, | 1)---(x;, | k) and ¢ € Ny such that k + ¢ < d we
define

shift(z, 0) = (2, | 1+0) - (x4, | K+ 1),
the shift of x by ¢ and
T Xgp y = xshift(y, |z|),

the LP-product of two Letterplace monomials z and y with |z| + |y| < d. Moreover, we
say that © LP-divides y if there exists ¢ € Ny with ¢ + |z| < d and shift(z, ¢) divides y
in LP. We denote this by z|,y. Finally for two Letterplace monomials =, y and ¢ € N
with ¢ > |z| and £+ |y| < d we set

split(w) := (z, y),
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if w = xshift(y, £). Clearly w is not a Letterplace monomial. This would only be the
case for ¢ = |z|.

Example 7.26.

The Letterplace monomial = := (zo | 1) LP-divides y := (1 | 1)(z2 | 2), because
shift(z, 1) = (x4 | 2) divides y in LP. This corresponds to the fact that z;z, is divisible
by x5 in P.

Remark 7.27.

Let v, w € P be monomials. Then the Letterplace monomial corresponding to vw is
the LP-product of their Letterplace monomials, i.e. ¢(vw) = ¢(v)shift(w, |v]). LP-
multiplication is associative but not commutative. Furthermore, v divides w, if and only
if p(v) LP-divides ¢p(w).

Let < be the graded left lexicographical ordering with 1 > x5 > ... > x, on X. Then
there is a monomial ordering <, on the monomials of LP such that for v, w € X we have
v < w, if and only if ¢(v) <4 d(w). We can take the graded lexicographical ordering
with (z1 | 1) > (22 | 1) > ...> (x| 1) > (21 | 2) > (22 | 2) > ... > (z, | 2) > ... and
this chain stops at the smallest monomial of length 1 namely 2¢, again indicating that we
need an upper bound d.

Now the principal idea is to compute an element of lem(LM(f), LM(g)) using commu-
tative polynomials. Let f, g € LP \ {0}, such that LM(f) is a Letterplace monomial
and LM(g) is the shift of a Letterplace monomial. Then there exists uniquely deter-
mined Letterplace monomials a, b such that lem(LM(f), LM(g)) = LM(f) Xzp b =
aLM(g) or lem(LM(f), LM(g)) = LM(f) = (aLM(g)) x.p b. It is essential to point
out that the least common multiple is uniquely determined in this commutative setting.
Take for example v = x12923T223, W = Xox3T2x3x4 € P with two non-trivial overlaps
Tow3rox3 (blue) and xoxs (red). The corresponding Letterplace monomials are ¢(v) =
(@1 | (@2 [ 2)(zs | 3)(x2 | 4)(z5 | 5) and ¢(w) = (z2 | 1)(z3 | 2)(22 | 3)(ws | 4)(z4 | 5).
Then the corresponding least common multiples in £P that we are interested in are given

by
lem(¢(v), shift(d(w), 1)) = (21 | 1)(z2 | 2)(zs | 3)(x2 | 4)(x3 | 5)(24 | 6)

for

L1|T2|X3|T2|T3
Lo|L3|X2|X3| T4

and

lem(¢(v), shift(p(w), 3)) = (w1 | 1)(2 | 2)(ws | 3)(22 [ 4)(w5 | 5)(x2 | 6)(ws | 7) (24 | 8)

for

L1|X2|T3|Ta| L3
To|T3|X2|X3|Tq
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but we also have to consider trivial overlaps. In the field case it suffices to take

P(v) X cp p(w)
=¢(v) shift(p(w), 5)
=(21 | 1)(z2 | 2)(zs | 3)(22 | 4)(x3 | 5) (2 [ 6)(zs | T)(22 | 8)(z3 | 9)(z4 | 10),

because ¢(v) has length 5. When computing over R, we also need the infinitely many

P(v) Xcp W X cp p(w)
=¢(v) shift(w, 5) shift(¢p(w), 5+ |@])
=(z1 | (22 | 2)(25 [ 3)(z2 [4)(23 | 5) @ -
(@2 [ 64 |0]) (s | T+ [@0]) (22 | 8+ [@])(2s | 9+ [@]) (24 | 10 + [D])

for every Letterplace monomial w and @ = shift(w, 5). The procedure stops when |¢(v)|+
@] + |p(w)] = d.

Algorithm 7.28. (Buchberger’s algorithm for degree-bounded strong Grébner
bases over R(X) with Letterplace)

The following algorithm computes a set G of Letterplace polynomials such that the preim-
age ¢~ (@) is a degree-bounded strong Grobner basis for the ideal generated by the preim-
age of the input Letterplace polynomials.

SBBALP

input: {f1, ..., fv} C LP, d € N, REDUCE, LMSHIFT, INSERTPAIR, SPOLY, GPOLY
output: degree-bounded set G of Letterplace polynomials

01: G=10

02: T=10

03: L=1{(0,0, f;) |1 <i<Fk}
04: while L # () do

05:  choose (a, b, h) € L

06: L=L\{(a,b, h)}

07: if h =0 then

08: hy = SpoLY (a, b)

09: hy = GPOLY(a, b)

10:  end if

11:  for j € {1, 2} do

12: h = REDUCE(h;, T')

13: if A # 0 then

14: for 0 <1< d—deg(h) do
15: T =T U{LMSHIFT(h, )}
16: end do

17: G=GgU{h}

18: for g € G do
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19: for 0 <1 < d—deg(h) do

20: R = LMSHIFT(h, 1)

21: if [ > deg(g) then

22: for w a Letterplace monomial with |w| =1 — deg(g) do
23: w' = shift(w, deg(g))

24: L = INSERTPAIR(g, w'l/, L)
25: end do

26: else

27: L = INSERTPAIR(g, I, L)

28: end if

29: end do

30: for 1 <[ <d—deg(h)do

31: ¢ = LMSHIFT(g, ()

32: if [ > deg(h) then

33: for w a Letterplace monomial with |w| =1 — deg(h) do
34: w' = shift(w, deg(h))

35: L = INSERTPAIR(h, w'g, L)
36: end do

37: else

38: L = INSERTPAIR(h, ¢, L)

39: end if

40: end do

41: end do

42: end if

43: end do

44: end while

45: return G

This algorithm is, similar to the field case, merely a translation of non-commutative
polynomials to Letterplace polynomials and has the theoretical background conditions
and special features as Algorithm 7.20. We should still comment the procedure, since
it is rather lengthy. The set G was originally denoted by S for “standard basis” in 5
and contains the Letterplace polynomials that we are interested in, namely those, whose
preimage is a bounded strong Grobner basis. G, or S respectively, is kept small in order
to correspond to a reduced Grobner basis. The set T" on the other hand is used to reduce
elements. The “lazy” set L consists of triplets which are either of shape (0, 0, f;), for the
initial polynomials f;, or (a, b, 0), which are used to form S- and G-polynomials up to a
certain degree. Whenever the leading monomials of @ and b have a least common multiple,
which is a Letterplace monomial, we add the pair in form of a triplet to the set L and
thus, iteratively, obtain all possible combinations of S- and G-polynomials, both first and
second type. These S- and G-polynomials are then reduced by, as we mentioned under
Algorithm 7.20, polynomials of smaller or equal degree. After finitely many steps every
S- and G-polynomial reduces to zero and the set L will be empty. Thus the algorithm
terminates.
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We use the following procedures.

Algorithm 7.29. (Supporting Procedures)

First type S- and G-polynomials are computed with the following two procedures. It is
important to point out that in the following LM(f) is a Letterplace monomial, whereas
LM(g) may be shifted.

SPOLY

input: f, g€ LP
output: spoly(f, g)

01: ¢ = lem(LM(f), LM(g))
02: a= lcmgeLC(f), LC(g))
03: ty = LM(/)
04: t, = Ll\/f 7
05: af = L(g:(f)
06: ay = TC(g)

07: (ty, t};) = split(ts)
08: (ty, t,) = split(ty)
09: return ast; X op tail(f) xcp t} — agty xcp tail(g) X cp €,

It is important to note that the element ¢; is a shift of a Letterplace monomial, because
LM(f) is a Letterplace monomial. Therefore, we have split(t) = (1, t;) for some Letter-
place monomial such that LM(f)t; = LM(f) xpt};. This is an aspect of implementation
as it is done in the field case.

GPOLY

input: f, g€ LP

output: spoly(f, g)

01: t = lem(LM(f), LM(g))

02: (b, by, by) = EXTGep(LC(f), LC(g))
t

03: tf = LM(f)
t
04: t, = TA(g)

05: (tf, t/f) = Spht(tf)
06: (t,, t;) = split(t,)
07: return btf X rop LM(f) X op t/f + bftf Xrop tall(f) X op t/f + bgtg Xrp tall(g) X rop tlg

Reduction of h happens whenever an element of G LM-reduces h. This is essentially
our normal form Algorithm 5.9 from chapter 5.
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REDUCE

input: fe LP, T CLP
output: normal form of f w.r.t. T
01: h=f
02: while h # 0 and T}, = {g € T'| g LM-reduces h} # () do
03:  choose g € T},
04:  choose a € R\ {0}, b € R with LC(h) = aL.C(g) + b and |b| < |[LC(g)|
LM(h)
05: t=
LM(g)
06: (tl, t2) = Spllt(t)
07: h = bLM(h) + taﬂ(h) —aty Xrp tall(g) X rp to
08: end while
09: return h

One problem that arises is that after shifting the leading monomial of a Letterplace
polynomial it may have a different leading term. In other words shift(LM(h), I) and
LM(shift(LM(h), [) + tail(h)) may be distinct due to the construction of the Letterplace
ring depending on the monomial ordering. However, the tail of h will be considered in the
later steps of the algorithm allowing us to only focus on the shift of the leading monomial
instead of shifting every monomial in h.

LMSHIFT

input: h € LP, 1 € Nj
output: h with shifted leading term
01: return LC(h)shift(LM(h), 1) + tail(h)

A pair is inserted whenever the least common multiple of the leading monomials has
the right structure, i.e. is a Letterplace monomial. This takes place after h is added to
G, because we need S-polynomials of elements with themselves.

INSERTPAIR

input: f, g € LP, L C LPV?

output: L or LU{(f, g,0)}

01: t = lem(LM(f), LM(g))

02: if t is a Letterplace monomial then
03: L=LU{(f, g, 0}

04: end if

05: return L
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To apply our criteria for critical pairs we will translate the conditions to £LP-polynomials.

Lemma 7.30.

Commutative version: If LC(f) | LC(g), then gpoly(f, g) reduces to zero w.r.t. {f, g}.
Non-commutative version: If LC(f) | LC(g), then every first and second type G-polynomial
reduces to zero w.r.t. {f, g}.

LP-version: Let w € X and ¢’ := LMSHIFT(g, deg(f)), w' := LMSHIFT(w, deg(f)),
g" := LMSHIFT(g, |w|+deg(f)). If LC(f) | LC(g), then GpoLY(f, ¢') and GPOLY(f, w'g")
are redundant for Algorithm 7.28.

To apply this to the algorithm, we check in line 09, whether

ged(LC(a), LC(b)) € {LC(a), LC(b)}. If this is true then we set hy = hy and hence only
consider one element in line 11. Otherwise we continue with hy = SPOLY(a, b). For
further improvements we can apply the Lemma in lines 23, 26, 34, 37 respectively, where
a new pair is added to L. Whenever INSERTPAIR(g, A/, L) (or any other of the four
insertions) is called up, we check if ged(LC(g), LC(h)) € {LC(g), LC(h)} and skip the
insertion if this is true (note that ¢’, b’ are just shifts of g, h respectively, and thus have
the same leading coefficient).

Lemma 7.31.

Commutative version: If LC(f), LC(g) are coprime and LM( f), LM(g) are coprime, then
spoly(f, g) reduces to zero w.r.t. {f, g}.

Non-commutative version: Let {7 := |LM(f)|—|LM(tail(f))], ¢, := |LM(g)|—|LM(tail(g))]
and w € X. If LC(f), LC(g) are coprime and either

o (y# /L, o0r
o (;=1/{,> |w| and LM(f), LM(g) have only trivial overlaps or

o (; =/, < |w|and there do not exist monomials z, y € X with LM(f) = LM(tail(f))x
and LM(g) = yLM(tail(g)) or

o /; =/, < |w|, there exist monomials z, y € X with LM(f) = LM(tail(f))zr and
LM(g) = yLM(tail(g)) and LC(f)LC(tail(g)) # LC(g)LC(tail(f)),

then spolyy (f, g) reduces to zero. Shortly written, the above conditions imply that
LT (tail(f)wg) # LT(fwtail(g)). However, note that the condition ¢y # ¢, is easy to
check and weak compared to conditions of coprimeness.

LP-version: Let ¢’ := LMSHIFT(g, deg(f)), w’ := LMSHIFT(w, deg(f)) and ¢" :=
LMSHIFT(g, |w| + deg(f)). If LC(f), LC(g) are coprime then the corresponding LP-
polynomial to the second type S-polynomials is

SpoLY(f, w'g") = tail(f) Xcp w Xcp g — f Xrop w X op tail(g)
which is redundant for Algorithm 7.28, if
o [y :=deg(f)— deg(tail(f)) # deg(g) — deg(tail(g)) =: £, or
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LC(f) 1 LC(tail(f)) or
LC(g) t LC(tail(g)) or

LC(f)LC(tail(g)) # LC(g)LC(tail(f)) or

|w| < ¢ and LM(f), shift(LM(g), deg(tail(f)) + |w|) are coprime or

LM(f), LM(tail(f)) are coprime or

LM(g), shift(LM(tail(g)), ¢,) are coprime or

LM(f), shift(w, deg(tail(f))) are coprime or

|w| > ¢, and w, shift(LM(g), |w| — ¢,) are coprime or

|w| < ¢ and LM(g), shift(w, ¢; — |w|) are coprime.

This criterion finds application in lines 23 and 34 where the second type polynomials are
added to L via INSERTPAIR. If h = hy and | > deg(g) in line 20 or | > deg(g) in line
31 then we check if LC(g), LC(h) are coprime and again skip the insertion if this is true
and one of the above four conditions holds. Furthermore, over fields this criterion can be
easily implemented in the INSERTPAIR-procedure by checking if lem(LM(f), LM(g’)) is
a Letterplace polynomial with lem(LM(f), LM(g")) = LM(f) xcp LM(g).

Lemma 7.32.
Commutative version: Let f, g, h € G C P, such that

L. LM(f) [ lem(LM(g), LM(h)),
2. LC(f) | lem(LC(g), LC(h)) and
3. spoly(f, ¢g) and spoly(f, h) have strong Grébner representations.

Then spoly(g, h) has a strong Grobner representation w.r.t. G.
Moreover, if

1. LM(f) | lem(LM(g), LM(h)) and
2. LC(f) | ged(LC(g), LC(R)),

then gpoly(g, h) has a strong Grobner representation w.r.t. G.
Non-commutative version: Let f1, fo, f3 € G C P with

L. LM(f1)r; = rsLM(f3),
. LM(f1)s1 = soLM( f2),

3. LM(f2)te = tsLM(f3),
. LM(f2)

\)

f2 divides LM(fl)Tl = T3LM(f3) and
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5. LC(f2) | lem(LC(f1), LC(f3))-

for r1, r3, s1, S, to, t3 € X. We consider the to these overlap relations corresponding S-
polynomials. If spoly(fi, f2) and spoly(f2, f3) reduce to zero, then so does spoly(fi, f3).

Proof.
Let

L lem(LC(f), LC(S)
v LC(/)

for i, j € {1, 2, 3}. Then

CijCki _ CjiClj

Cik B Cik
for {i, j, k} = {1, 2, 3}. By the above relations 1. - 4. there are r, s, t, u, v € X with
LM(fy) = rst, LM(f2) = stu, LM(f3) = tuv. Hence we have r; = uv, r3 = rs, $; = u,
Sg =7, to = v, t3 = s and thus LM(f;)u = rLM(f2), LM(f2)v = sLM(f3). Now

SPOI& (} 1 )3) 013,}(‘1I 1 C3117 3f3
C31C C31C:
31623 fQU 31623 fQU

=ci3fruv — cs1rsfs +
C32 C32
C31C23 C13C21
T foly —

C32 C12

=cigfiuv — cs11sf3 + 59 fov

C31

=——71(cos fata — C3atsf3) + f(012f181 — 21852 f2)v
C32 C12

C31
= rspoly(fa, f) + —Espoly(fi, fa)v
C39 C12

reduces to zero. O

Moreover, if

L LM(f1)r1 = rsLM(/fs),

2. LM(f1)s1 = s2LM(f2),

3. LM(f2)te = tsLM( f3),

4. LM(fy) divides LM(f1)r1 = rsLM(fs) and

5. LC(f2) | ged(LC(f1), LC(f3)),
then the corresponding G-polynomial gpoly(fi, f3) reduces to zero.

Proof.
With the above notations from the proof of the chain criterion for S-polynomials let
w:=r®uve P ged(LC(f1), LC(f3)) = b1LC(f1) + bsLC(f3) and

ged(LC(f1), LC(f3))

=T e

eR.
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Then dwLT(fs) = ged(LC(f1), LC(f3))LM(f1)r1 and

gpoly(f1, f3) — dwf> — byspoly(fi, f2)v + bsrspoly(f2, f3)
=by f111 + baraf3 — dr fov — by f1510 + b1ca1 52 fov — bycasr fata + b3ris f3
=by tail( fi)uv + barstail(f3) — drtail(fo)v
— by tail( f1)uv + byegyr tail( fo)v + bacosr tail( fo)v — bsrs tail( f3)
= — drtail(fa))v + bycorr tail(fo)v + bycasr tail(fo)v
= gb1C21 + bgcoz — dz rtail(f2)v,
=0
because LC(f2)co1 = LC(f1), LC(f2)cos = LC(f3). Hence gpoly(fi, f3) has a strong
Grobner representation. O]

We have seen the basic idea of these two proofs several times but under the given hy-
pothesis it becomes much clearer. Obviously this works for any permutation of 1, 2, 3
and these are all cases we need to consider to have an analogues statement to the chain
criterion in the commutative situation.

LP-version: Let fi, fo, f3 € LP with
) Xepr1 =13 Xep LM(f3),
f1) Xep s1= s2 X cp LM(f2),
3. LM(f2) Xzp ta = t3 X cp LM(f3),
M(f2) [cp LM(f1) xcp 11 = r3LM(f3) and
5. LC(f2) | lem(LC(f1), LC(f3))

for Letterplace monomials 7y, 73, S1, So, t2, t3. Let fi = LMSHIFT(fs, |s2]), fi =
LMSHIFT(f3, |t5]) and f{ = LMSHIFT(fs, |rs3|). If SPOLY(f1, f5) and SPOLY(f2, f3}) have
been declared as useless for the procedure, then so is SPOLY(f1, fY).

Moreover, if

fi) Xepri =13 Xep LM(fs),

1. LM

2. LM

4. L

1. LM(f1)

2. LM(f1) xzp 81 = 82 Xcp LM(f2),

3. LM(f2) xXcp ta = t3 X cp LM(f3),

4. LM(f2) |zp LM(f1) X zp 71 = 7sLM(f3) and
5. LC(f2) | ged(LC(f1), LC(f3))

for Letterplace monomials 71, r3, s1, Sa, ta, t3, then GPOLY(f1, f4) is redundant to Algo-
rithm 7.28 with f{ = LMSHIFT(f5, |r3]).
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Lemma 7.33.

If t = LM(f) is divisible by LM(g) then the only first type S- and G-polynomials w.r.t. ¢
are spoly’ (f, g) and gpoly’ (f, g). However, these two are not uniquely determined.
Moreover, if t = LM(f) = LM(g), then (f, g) = (spoly’ (f, g), gpoly’(f, g)). In this case
spoly’ (f, g) and gpoly!(f, g) are unique. This does not include the case where ¢ has
non-trivial self overlap.

For the criteria to be applied in the algorithm explicitly, we will modify the INSERTPAIR-
procedure and change the sets of triples L to a set of quintuples, such that the fourth and
fifth entries are boolean values which indicate, whether a pair is redundant by one of the
criteria (“done”) or not (“to do”). The problem is that a pair might have an S-polynomial
that reduces to zero, i.e. is redundant, but on the other hand have a G-polynomial that
is required, which is why we need two boolean values instead of one, as in the field case.
We, therefore, replace the following lines in Algorithm 7.28.

03: L=A(0,0, fi | “to do”, “to do”) | 1 <i < k}

04’: while {(a, b, h | By, B2) € L | B; = “to do” or By = “to do”} # () do
05":  choose (a, b, h | By, By) € L

06': L=L\{(a, b, h|B, By)}

11'a:  for j € {1, 2} do

11'b: if B, = “to do” then

24" L = INSERTPAIR; (g, w'h', By, Bs, L)
27" L = INSERTPAIR;(g, I/, By, By, L)
35" L = INSERTPAIR(h, w'g’, By, Bs, L)
38’ L = INSERTPAIR,(h, ¢, By, Bs, L)
42'q: else

42'b: B; = “done”

42'c: end if

By indicates if an S-polynomial (hy) is “done”, while By stands for G-polynomials. The
procedure INSERTPAIR is also replaced.

INSERTPAIR;

input: f, g € LP, By, B, boolean values, L C LP'*®

output: a superset of L

01: ¢t = lem(LM(f), LM(g))

02: if ¢ is a Letterplace monomial then

03: if t = LM(f)LM(g), LC(f), LC(g) coprime and (
LC(f)LC(tail(g)) # LC(g)LC(tail(f)) or

hdeg(f) — deg(tail(f)) # deg(g) — deg(tail(g)) )
then
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04: L=LU{(f, g,0] “done”, Bs)}

05:  else if 3(f, p, 0,| “done”, By), (p, g, 0,| “done”, By) € L with
p' = LMSHIFT(p, deg(f)),
LC(p) | lem(LC(f), LC(g)) and

LM(p) |[zp ¢
then
06: L=LU{(f, g,0] “done”, By)}
07: else
08: L=LU{(f, g,0]|“to do”, By)}
09: end if
10: end if

11: return L

In INSERTPAIR; we check in line 03 for the product criterion and in line 05 for the chain
criterion. The product criterion has different possibilities to be checked as we see in
Lemma 7.31. The easiest ones in terms of computational effort are to use £; and ¢, or to
look at the coefficients.

INSERTPAIR,

input: f, g € LP, By, By boolean values, L C LP1*5

output: a superset of L

01: ¢ = lem(LM(f), LM(g))

02: if ¢ is a Letterplace monomial then

03:  if LC(f) | LC(g) or LC(g) | LC(f) then

04: L=LU{(f, g,0]| By, “done”)}

05: else if 3(f, ', 0,] By, By), (p, 9, 0,| By, By) € L with
p' = LMSHIFT(p, deg(f)),
LC(p) | ged(LC(f), LC(g)) and

LM(p) |[zp ¢
then
06: L=LU{(f, g,0]| By, “done”)}
07: else
08: L=LU{(f, g,0] By, “todo”)}
09: end if
10: end if

11: return L

Again we check in line 05 of INSERTPAIR for the chain criterion for G-polynomials. In line
03 we apply the fact, that a G-polynomial reduces to zero, if one of the leading coefficients
divides the other.

Another improvement can be made by relaxing the ending criterion of the while loop. We
had a similar statement in chapter 5.
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Lemma 7.34.
Let G C P\ {0} and Z C P be an ideal. The following are equivalent.

1. G is a strong Grobner basis for Z.

2. Let f,g € T\ {0}. If LC(f) | LC(g) or LC(g) | LC(f), then every first and
second type S-polynomial reduces to zero. If on the other hand LC(f) t LC(g) and
LC(g) t LC(f), then every first and second type G-polynomial reduces to zero.

Proof.

If G is a strong Grobner basis for Z, then every first and second type S- and G-polynomial
reduces to zero by 7.21.

Now let f, g € G with LM(f)ty = t,LM(g). Then the corresponding S- and G-polynomial
are

spoly(f, g) = ay tailt; — a,t, tail(g)
gpoly(f, g) = dt + by tailt s + byt tail(g)

and are of first or second type with d = ged(LC(f), LC(g)). If LC(f) | LC(g) or LC(g)
LC(f), then the G-polynomial reduces to zero and so does the S-polynomial by 2. If on
the other hand LC(f) t LC(g) and LC(g) 1 LC(f) then according to 2. the G-polynomial

reduces to zero and we have afb, + azbf = 1, as well as

spoly(f, gpoly(f, g)) := ft; — aggpoly(f, g) = bgspoly(f, g)

and

spoly(gpoly(f, 9), g) := asgpoly(f, g) —tyg = byspoly(f, g)

are S-polynomials of first or second type and we can construct a first or second type
G-polynomial

gpoly(spoly(f, gpoly(f, g)), spoly(gpoly(f, g), 9))
1= aybgspoly(f, g) + a,bgspoly(f, g)
=spoly(f, g)

which reduces to zero. We have the analogous statement for LM(f) = ¢,LM(g)t, or for
f, g interchanged. [

Thus the boolean value B; only needs to be “done”, when LC(f) | LC(g) or LC(g) | LC(f).
Simultaneously B, only needs to be “done”, when LC(f) { LC(g) and LC(g) 1 LC(f).
When R is not a Euclidean domain, but we want to consider (Z/mZ) for some non-zero
m € Z, not a unit and not prime, then we can use factorizations of m as we have seen
in chapter 6. Recall that a factorization of m, say m = ab, implies that xy # m for
atz|a, bfy|b Suppose that cx = a, dy = b and for a contradiction xy = m. Then
m = ab = cdry = cdm and thus m(1 — cd) = 0 which implies 1 = cd, because R is a
commutative domain. But then ¢ is a unit contradicting a t z. This was easy to see but
means that we have to choose our coefficients wisely when using lifting methods.
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Lemma 7.35.

Let R be a Euclidean domain and m = ab € R with a, b coprime such that ar 4+ bs = 1
for some r, s € R. Then there are canonical projections 7 : R[X] — (R/mR)[X], as well
as

ot (R/mR)(X) = (aR +bR)/mR(X) = (R/aR)(X)
and
o (R/mR)(X) = (aR + bR)/mR(X) = (R/bR)(X).

For an ideal Z of (R/mR)(X) =: P, we assume that there exist countable sets G, =
{9a.i}tis Go = {gv.;}; C P, such that m,(G,) is a strong Grobner basis for 7,(Z) and m,(Gs)
is a strong Grébner basis for 7,(Z). Additionally let w(a) € G,, w(b) € Gy, m(a) 1 LC(ga,:) |
7(a) for g, ; # m(a) and 7(b) 1 LC(gs, ;) | m(b) for g, ; # 7(b). Recall that this implies that
the leading coefficients are non-trivial zero divisors in the respective quotient rings. For
every pair 4, j there exist monomials 7; ;, 7;; € P° such that 7, ;LM(g,, ;) = 7;,;LM(gs, ;)
and

l.;=1®2, 75, =y®1or
2.1,=2®1,7,,=1®y or
3.1, =1®1, 7, =y®y or
4 7=z, 1, =101

for monomials x, 2, y, y'. These are precisely the overlap relations corresponding to first
and second type S- and G-polynomials. We define

fi,j = m(ar)LC(ga,i) 75,96, + 7(bs)LC(gs, ;)i G, i-
Then G :={f; ; | 7, ;LM(gq,:) = 7;,:.LM(gp ;)} is a strong Grobner basis for Z.

Proof.
The proof is similarly to Corollary 6.8 a direct consequence of Theorem 6.4 and Theorem
6.6 which are proven in the non-commutative case analogously to the commutative one.

[]

Note that the 7 ;, 7;; are not uniquely determined since all overlap relations of the
leading monomials have to be considered. The above lemma leads to similar algorithms
as in chapter 6.
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Conclusion and future work

Non-commutative Grobner bases over rings lead to so far unknown phenomena and un-
solved problems. It is possible to transfer ideas, statements and criteria from commu-
tative Grobner bases and the field case to this new situation under certain adjustments.
Coefficients require the definition of G-polynomials and, in principal ideal rings, also
A-polynomials. The lack of a general product criterion leads to infinitely many overlap
relations of leading monomials, since we cannot simply ignore non-trivial overlap relations
as in the field case. It is also possible in the field case to have an infinite Grébner bases,
but this is due to a boundless growing number of overlap relations where the product
criterion excludes the trivial ones. Also, chain criteria are harder to apply, since they
require a certain shape of leading monomials. On the other hand, we obtain much more
pairs to be able to reduce newly constructed polynomials during Buchberger’s algorithm.
Example A.2 shows that we are computing much more S- and G-polynomials than in
the commutative case or in the field case. There are many zero-reductions that are not
predictable by the product or chain criterion. It is, therefore, necessary to find more cri-
teria and also to choose pairs of which we compute S- and G-polynomials in order to be
able to reduce further. A consequence of Example 7.22 and Example A.2 is the “blowing
up’-effect of second type S- and G-polynomials spoly; and gpolysy, where w € X is the
power product of a single letter, for example w = z* = z---x. We can see that these
elements are not reducible. For every other shape of w € X, we need, due to the lack of
criteria, an option to choose pairs efficiently in order to minimize computational effort.
The implementations of Buchberger’s algorithm using SINGULAR:LETTERPLACE [25] are
expected to give fruitful results and new insights on this behaviour.

It is useful from an implementational point of view not to exclude too many pairs, so that
we have more possibilities of reduction. The implementation of Algorithm 7.28 without
criteria needs to be tested, before we can engage the search for new criteria and strate-
gies. Moreover, it is desirable to find a closed expression for an infinite Grobner basis, for
example G = {2z, 3y} U {zz'y, yz'x | i € N}. As we have seen in Example 7.22, it is not
easy to find such a pattern in more general cases.

Subject of future research will be Grobner bases for bilateral modules, especially for sub-
modules of (P¢)" = (P ® POPP)" with n € N.; and finitely presented modules over Z.
For the commutative field case (K[X])" this was done in [8], chapter 2, with Schreyer
orderings. A great interest lies in finding criteria for algorithms to compute such bases in
order to gain new insights on bilateral syzygy modules.
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A Appendix

Example A.1. (ad Example 7.22)

Recall Example 7.22, where we considered (2z, 3y) C Z(x, y, z) with the graded left
lexicographical ordering. Then every S-polynomial of the generators is zero and every
G-polynomial of 2z, 3y is of second type and contained in one of the sets z.X,,y given as

follows.

xXoy = {zy}
v X1y = {zzy, Tyy, r2y}
xXoy = {:vxa:y, Tryy, rTr2Y, TYTY, TYYY, rYLY, r21Y, TZYY, $ZZ?/}

X3y = {xxazy, rrayy, rrazy, YTy, TTYYY, TTYZY, TLZTY, TTZYY, TTZ2Y,
rYrryY, TYTYY, TYLLY, TYYTY, TYYYY, TYYLY, TYZTY, TYLYY, TYZZY,
TZITY, TZTYY, TZXZY, TZYTY, TZYYY, T2YZY, TZZLY, TZ2YY, T222Y}

Xy = {xxrrry, xerryy, xrrrzy, rTTYTY, TXTYYY, TTXYZY, TLTZTY, TETZYY, TTTZZY,
TTYTTY, TXYTYY, TTYTZY, TLYYTY, TTYYYY, TTYYZY, TLYZTY, TTYZYY, TTYZZY,
TTZTTY, TLZTYY, TTZTZY, TTRZYTY, TTLZYYY, TTRZYZY, TLZEZTY, TTZZYY, TTZLZY,
TYTTTY, TYTTYY, TYTTZY, TYTYTY, TYTYYY, TYTYZY, TYTZTY, TYTZYY, TYLZZY,
TYYrry, rYYyryy, TYYry, rTYYYry, TYYyyy, TYYYY, rYYryY, TYYZYYy, rTYY=2y,
TYZIXY, TYZTYY, TYZTZY, TYZYTY, TYZYYY, TYZYZY, TYLZZLY, TYZZYY, TYZZY,
TZXTTY, TZTTYY, TZTTZY, TZXYTY, TZLYYY, TZTYZY, TZTEZTY, TZLZYY, TZTZZY,
TZYTXY, TZYTYY, TZYTZY, TZYYTY, TZYYYY, TZYYZY, TZYZLY, TZYZYY, TLYZZY,
TZZXXY, TZZTYY, TZZTZY, TZZYTY, TZZYYY, TZZYZY, TZZZXY, TZZ2YY, TZ222Y}

The set X,, contains all monomials in X of length n and has cardinality 3". But if we
compute a strong Grobner basis with Algorithm 7.20, then every element of x X,y reduces
to zero w.r.t. elements of z XyyU. ..Uz X, _1y, except zz - - - zy. Equivalently every element
of yX,x reduces to zero, except yz--- zx.

Example A.2. (Exemplary Calculation of a strong Grobner basis with Buchbergers Al-

gorithm up to a degree-bound)
Let fi = 6zy + 2, fo = 4yz and T = (fy, fa).

First case: T C Zlx, y, 2]

// We follow the steps of Buchberger’s algorithm 5.11.
G=1{f, f2}

f3 = SpOly(fl, fg) = 22f1 - 3:1,"]02 =4z
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// We already see that f3 reduces fo to zero, thus fo is redundant.
fa = gpoly(fi, fo) = z2f1 — xfo = 2zyz + 22

L ={fs, fa} is not empty.

Choose f3 € L. // completely reduced and non-zero

// We do not compute any S- or G-polynomials involving fs.

J5s = SpOlY(fh f3) = 2zf1 — 3wy fs =4z = f3

fo = gpoly(fi, f3) = 2f1 —xyfs = 22yz + 22 = f4

L= {f3, f4}

G={h, fs}

// fs reduces to zero w.r.t. G.

Choose fy € L. // completely reduced and non-zero
/] LC(fy) = 2 divides every leading coefficient of G.
// Thus we do not need G-polynomials.
fr=spoly(fi, fu) =2fi —3fs=—42=—f3

fs =spoly(fs, fa) =xyfs —2fs=—4z=—f;
L={fs fa}

G={h, fs fa}

// Every element of £ reduces to zero w.r.t. G.
/] G ={6xy + 2, 4z, 2xyz + 2z} is a strong Grobner basis for Z.

Second case: T C Q(z, y, z)

// Extract contents.

f2=yz

// We only need first type S-polynomials due to the product criterion over fields.
f3 =spolyi”*(f1, fo) = fiz =3z fo =2

// As above, f; is redundant.

// There is no first type S-polynomial spoly’(fa, f1).

L={fs}

Choose f3 € L // completely reduced and non-zero

// LM(f1), LM(f3) have no overlap, the S-polynomial will reduce to zero.

G=A{f, f3}
/] G ={3zy+1, z} is a Grobner basis for Z and finite, as expected.

Third case: T C Z{x, y, z)

As a degree bound we choose d := 5 and our global monomial ordering shall be the graded
lexicographical one with z > y > z.

G=1{h, f2}

L=10

// We only compute the S-polynomials which are non-zero.
fs = gpolyi”*(f1, fo) = fiz — xfo = 2u0yz + 22

fi=gpolyy(f1, f2) = fiyz — xyfa = 2zyyz + 2z

fs = gpolys(f1, fo) = fizyz — xyx fo = 2xyzyz + 220y2 = Y f3
fo = gpoly3(fi, fo) = fiyyz — xyyfo = 2zyyyz + 2yy2
fr=gpoly5(f1, f2) = fizyz — xyzfo = 2xyzyz + 22yz = f3yz
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fs = gpoly}(fa, f1) = — fary + yzf1 = 2yzzy + 2yz

fo = gpoly5(fa, f1) = —foxzy +yza fi = 2yzaay + 2yzx
fio = gpolys(fa, f1) = —fayzy + yzyfi = 2yzyxy + 2yzy
fi1 = gpolyi(fa, f1) = —fozaxy +yzzfi = 2yzzay + 2yzz
fi2 = spoly 1" (f1, fo) = 2f1z — 3ufy = 42

fiz = SpOle(fb fz) =2fiyz — 3wy fo = dyz = yfio

fia = SpOle(fl, f2) = 2fizvyz — 3zyx fo = dxyz = 2y f1o
fis = spoly3(f1, fo) = 2fiyyz — 3zyy fo = dyyz = yyfro
f16 = spolys(fi1, f2) = 2f12yz — 3xyzfo = 4dzyz = 2y f1o
fir = spolyy(fa, f1) = =3 foxy + 2yzf1 = 4yz = y fio

fis = spoly; (fa, f1) = —3fazxy + 2yzaf) = dyzae = yfiox
Ji9 = SpOle(fm fl)
fao = spoly5(f2, f1) =

Ez{f& R f20}
// We add all elements to G, that do not reduce to zero.

// Moreover, we can remove f, from G, because fo = yfio.
G =1{f1, f3, fa, fs; f3, fo, fro, fu1, fra}-
// This was the first iteration of Algortihm 7.20
// Furthermore, we compute the S- and G-polynomials of all these elements with each
other.
fo1 = gpobfz(fh fi2)
fo2 = gpolyy(fiz, f1) = —frawy + 2f1 = 222y + 22
fa3 = gpoly; (fiz, f1) = —frevry + 22 f1 = 2200y + 220
( )
( ) =

=3 foyxy + 2yzyfi1 = 4yzy = yfi2y
—3fazry + 2yz2fi = dyzz = yfiay

fiz—xyfio =2zyz + 22 = f3

for = gpoly3(fra, f1) = —froywy + 2y fr = 2zyxy + 22y = faoy
fas = gpoly5(fi2, f1
// ete.

// All other new G-polynomials will reduce to zero by Remark 7.10, except

fos = spoly1”*(f1, f3) = —fiz + 3f3 =4z = fus

for = spolys(f1, fs) = —freyz + 3wy fs = dayz = xy fio

fi = spolys(fs, f1) = 3fsxy — xyzfi = 6zay — 2xyz // which is reducible to

fog = —fog + fr2wy = 2wy2 — 2zy.

// Note at this point, that in the field case fjg would reduce to zero w.r.t. fio,

// because then LC(f12) =4 ~ 1 is a unit.

// In the commutative case on the other hand we would clearly have fig = 0.

// However, we can reduce further on.

fos = —fog + f3 = 2zay + 22 = fo

fao="...

// We continue with computing all possible combinations of S- and G-polynomials for the
elements of £ up to degree 5.

// No reduction can be expected in the case of a leading monomial of shape ez - - e,
ey ---ye or ez ---ze which will be infinitely many.

— frozay + zzf1 = 22220y + 222 = 2 foo
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