Fundamental iņvarịants of improper symplectic reflection groups

Tobias Metzlaff \& Ulrich Thiel tobias.metzlaff@rptu.de

Notation

- \mathfrak{h} a \mathbb{C}-vector space of dimension n
- \mathfrak{h}^{*} the dual, that is, the linear maps $\mathfrak{h} \rightarrow \mathbb{C}$
- $\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]$ the symmetric algebra of $\mathfrak{h}^{*} \oplus \mathfrak{h}$ \Rightarrow after choosing a basis for \mathfrak{h} :
$\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]=\mathbb{C}\left[x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right]=\mathbb{C}[x, y]$
- $\mathcal{W} \subseteq \operatorname{GL}(\mathfrak{h})$ a complex reflection group

Diagonal Invariants

\mathcal{W} has a diagonal action on $\mathbb{C}[x, y]$ by
$(A, f(x, y)) \mapsto A \star f(x, y):=f\left(A x,\left(A^{t}\right)^{-1} y\right)$

- $\mathbb{C}[x, y]^{\mathcal{W}}$ the polynomial invariants
- $\mathbb{C}(x, y)^{\mathcal{W}}$ the rational invariants, that is, the field of fractions of $\mathbb{C}[x, y]^{\mathcal{W}}$

Problem: As a \mathbb{C}-algebra, $\mathbb{C}[x, y]^{\mathcal{W}}$ is finitely generated. \Rightarrow How to compute the generators?

Motivation

- Classification of reflection groups:
$\overline{\mathcal{W}}$ is a complex reflection group over \mathfrak{h}
$\Leftrightarrow \mathbb{C}[x]^{\mathcal{W}}$ is a polynomial ring.
$\Leftrightarrow \mathfrak{h} / \mathcal{W}=\operatorname{Spec}\left(\mathbb{C}[x]^{\mathcal{W}}\right)$ is smooth.
However, \mathcal{W} represented over $\mathfrak{h} \oplus \mathfrak{h}^{*}$ as

$$
\mathcal{W} \ni A \mapsto\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{t}\right)^{-1}
\end{array}\right)
$$

is NOT generated by reflections. Instead, we have a symplectic form

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mapsto y^{\prime}(x)-y\left(x^{\prime}\right)
$$

on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ and $\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) / \mathcal{W}$ is a singular symplectic variety, see [1, 2].

- Hamiltonian equations of motion: $\overline{\text { A Lie bracket on } \mathbb{C}[x, y] \text { is defined by }}$

$$
(f, g) \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}
$$

turning $\mathbb{C}[x, y]$ into the Poisson algebra.

References

[1] A. Beauville (2000) Symplectic singularities. Invent. Math. 139(3), 541-549
[2] G. Bellamy, J. Schmitt and U. Thiel (2022) Towards the classification of symplectic linear quotient singularities admitting a symplectic「resolution. Math. Z. 300(1), 661-681
[3] I. Gordon (2003) On the quotient ring by diagonal invariants. Invent. Math. 153, 503-518
[4] M. Haiman (1994) Conjectures on the Quotient Ring by Diagonal Invariants. J. Alg. Comb. 3, 17-76
[5] E. Hubert and I. Kogan (2007) Rational invariants of a group action. JSC 42(1-2), 203-217
[6] E. Hubert and E. Rodriguez Bazan (2022) Algorithms for fundamental invariants and equivariants of finite groups. Math. Comp. 91(337), 2459-2488
[7] A. Fässler and E. Stiefel (1992) Group Theoretical Methods and Their Applications. Birkhäuser, MA
[8] J.-P. Serre (1977) Linear Representations of Finite Groups. In: Grad. Texts Math. Springer, NY

Acknowledgements

This work is supported by the DFG research centre SFBTRR 195: Symb. Tools in Math. and their Application.

King's Algorithm

computes the generators ("fundamental invariants") for $\mathbb{C}[V]^{\mathcal{W}}$, where V is a finite dimensional \mathcal{W}-module, for example $V=\mathfrak{h} \oplus \mathfrak{h}^{*}$.

Set $F:=\emptyset, G:=\emptyset, \preceq$ the deg rev lex ordering on $\mathbb{C}[V]$. For $1 \leq d \leq|\mathcal{W}|$ do:

1. $G:=G \cup\{\mathrm{NF}(h) \mid h=\operatorname{spoly}(f, g)$,
$f, g \in G, \operatorname{deg}(h)=d\}$.
2. $M:=\left\{x^{\alpha} \in \mathbb{C}[V]| | \alpha \mid=d\right.$,
$\forall g \in G: \operatorname{LM}(g)$ does NOT divide $\left.x^{\alpha}\right\}$
3. If $M=\emptyset$, stop
4. For $t \in M$, set $f:=\frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} A \star t$.
5. If $\mathrm{NF}(f) \neq 0$, add f to $F, \mathrm{NF}(f)$ to G.
F is a set of fundamental invariants for $\mathbb{C}[V]^{\mathcal{W}}$.

Degree Principles

A polynomial $f \in \mathbb{C}[x, y]$ has bidegree
$\operatorname{Deg}(f):=\left(\operatorname{deg}_{x}(f), \operatorname{deg}_{y}(f)\right) \in \mathbb{N}^{2}$.
For $f(x, y)=\sum_{\alpha} c_{\alpha} p_{\alpha}(x) q_{\alpha}(y)$, set

$$
\Psi(f)(x, y):=f(y, x)=\sum_{\alpha} c_{\alpha} p_{\alpha}(y) q_{\alpha}(x)
$$

Theorem 1: The involution Ψ takes invariants to invariants: For $f \in \mathbb{C}[x, y]^{\mathcal{W}}$ with $\operatorname{Deg}(f)=(d, e)$, we have $\Psi(f) \in \mathbb{C}[x, y]^{\mathcal{W}}$ and $\operatorname{Deg}(\Psi(f))=(e, d)$.

Theorem 2: There is a system F of fundamental invariants for $\mathbb{C}[x, y]^{\mathcal{W}}$ with $\Psi(F)=F$.

Improving on King's

- $d \leq|\mathcal{W}|$ is suboptimal: It suffices to take $d \leq \inf \left\{k \in \mathbb{N} \mid \mathbb{C}[x, y]=\left\langle\bigoplus_{\ell=0}^{k} \mathbb{C}[x, y]_{\ell}\right\rangle\right\}$

Compute this bound efficiently.

- Exploit known results on the coinvariants $\mathbb{C}[x, y] / I$, where I is the ideal generated by the invariants without constant term $[3,4]$.
- Compute diagonal polynomial invariants from rational invariants [5].
- Exploit the symmetry given by the Degree Principles: King's Algorithm does NOT do that (see Example)
- King's algorithm is based on Gröbner bases. Symmetry adapted bases and H bases $[6,7,8]$ on the other hand preserve symmetry.

Relative Invariants

Given a character $\chi: \mathcal{W} \rightarrow \mathbb{C} \backslash\{0\}$, we call $f \in \mathbb{C}[x, y]$ a relative invariant, if, for all $A \in \mathcal{W}$, we have $A \star f=\chi(A) f$. We denote this by $f \leftrightarrow \chi$.

Theorem 3: For $f \quad \leftrightarrow \quad \chi$, there exists $f^{*} \in \mathbb{C}[x, y]$ with $f^{*} \leftrightarrow \chi^{-1}$ and $\operatorname{Deg}(f)=\operatorname{Deg}\left(f^{*}\right)$.

For $\chi=1$, this is Theorem 1 .

Example

Let $a \in \mathbb{C}$ with $a^{2}+a+1=0$, that is, $a^{3}=1$. We consider the complex reflection group $\mathcal{W}:=G_{4}$ (in the Shephard-Todd-classification), which is the group generated over $\mathfrak{h}:=\mathbb{C}^{2}$ by the matrices

$$
A_{1}=\left(\begin{array}{cc}
a & 0 \\
-a-1 & 1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{cc}
1 & a+1 \\
0 & a
\end{array}\right)
$$

The group \mathcal{W} has order 24 and any minimal set of fundamental invariants for $\mathbb{C}[x]^{\mathcal{W}}$ consists of 2 algebraically independent generators.
However, this is not true for $\mathbb{C}[x, y]^{\mathcal{W}}$: With King's algorithm, one obtains 8 fundamental invariants
$f_{1}=x_{1} y_{1}+x_{2} y_{2}$
$f_{2}=y_{1} y_{2}\left(y_{1}^{2}-y_{2}^{2}+(2 a+1) y_{1} y_{2}\right)$
$f_{3}=\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}-x_{2}^{2}+4 / 3(2 a+1) x_{1} x_{2}\right)$
$f_{4}=x_{1} y_{1}^{3}+x_{2} y_{2}^{3}-3\left(x_{2} y_{1}+x_{1} y_{2}\right)+(2 a+1) y_{1} y_{2}\left(x_{1} y_{1}-x_{2} y_{2}\right)-(2 a+1)\left(x_{1} y_{2}^{3}-x_{2} y_{1}^{3}\right)$
$f_{5}=x_{1}^{3} y_{1}+x_{2}^{3} y_{2}-3\left(x_{2} y_{1}+x_{1} y_{2}\right)+(4 a+2) x_{1} x_{2}\left(x_{1} y_{1}-x_{2} y_{2}\right)$
$f_{6}=x_{1}^{6}+x_{2}^{6}+(4 a+2) x_{1} x_{2}\left(x_{1}^{4}-x_{2}^{4}\right)-5 x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)$
$f_{7}=y_{1}^{6}+y_{2}^{6}+(4 a+2) y_{1} y_{2}\left(y_{1}^{4}-y_{2}^{4}\right)-5 y_{1}^{2} y_{2}^{2}\left(y_{1}^{2}+y_{2}^{2}\right)$
$f_{8}=x_{1}^{3} y_{2}^{3}-x_{2}^{3} y_{1}^{3}-(2 a+1)\left(x_{1} y_{1}-x_{2} y_{2}\right)\left(x_{1}^{2} y_{2}^{2}-x_{2}^{2} y_{1}^{2}\right)-\left(x_{1} y_{2}-x_{2} y_{1}\right)\left(x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}-3 x_{1} x_{2} y_{1} y_{2}\right)$,
forming a system F of fundamental invariants and ordered by their bidegrees

$$
\operatorname{Deg}(F)=\{(1,1),(0,4),(4,0),(1,3),(3,1),(0,6),(6,0),(3,3)\}
$$

We observe that $\operatorname{Deg}(F) \subseteq \mathbb{N}^{2}$ is \mathfrak{S}_{2}-symmetric. We have

$$
\Psi\left(f_{1}\right)=f_{1}, \Psi\left(f_{6}\right)=f_{7}, \Psi\left(f_{8}\right)=-f_{8} .
$$

