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Spectral bounds



Let G be an undirected graph with vertices V .

I ⊆ V is called independent, if u, v ∈ I ⇒ (u, v) is not an edge.

A coloring X of G is a partition of V in independent sets.

The chromatic number of G is

χ(G ) := min{|X |, X is a coloring of G}.
Example.

For the Petersen graph, the chromatic number is χ(G ) = 3.
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Theorem. (Hoffman 1970)
Let G be finite with adjacency matrix A ∈ {0, 1}V×V , that is,

Au,v =

{
1, if (u, v) is an edge,

0, otherwise.

Since A is symmetric, all eigenvalues are real, and

χ(G ) ≥ 1− λmax(A)

λmin(A)
.

Example.

For the Petersen graph, the eigenvalues are 3, 1,−2 and thus

χ(G ) ≥ 1− 3

−2
= 2.5.
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Set avoiding graphs



We proceed from finite to infinite graphs.

Let S ⊆ Rn be bounded centrally-symmetric with 0 /∈ S .

The set avoiding graph G (S) is the graph with
vertices Rn and edges (u, v), where u − v ∈ S .

A partition X of Rn in independent Lebesgue–measurable sets
is called a measurable coloring of G .

The measurable chromatic number of G (S) is

χm(S) := χm(G (S)) := min{|X |, X is a measurable coloring of G (S)}.
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Example. (Hadwiger, Nelson 1950)
Consider S = S1 = {u ∈ R2 | ∥u∥ = 1}.

Currently, the best known lower bound (found by de Grey in 2018)
and upper bound (given by the hexagonal tiling above) are

7 ≥ χm(S1) ≥ 5.
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Theorem. (Bachoc, Decorte, de Oliveira Filho, Vallentin 2014)
Let β be a positive Borel measure with support supp(β) ⊆ S
and Fourier transformation β̂ : Rn → R. Then

χm(S) ≥ 1−
max
u∈Rn

β̂(u)

min
u∈Rn

β̂(u)
.

Example.
Let S = 9 ⊆ R2 be the boundary of a regular hexagon so that

supp(β) = vertices(hexagon) =: {v1, v2, v3, v4, v5, v6}.

Then the Fourier transformation of β is

β̂(u) =

∫
9
e−2πi⟨u,v⟩dβ(v) = β1 e

−2πi⟨u,v1⟩ + . . .+ β6 e
−2πi⟨u,v6⟩,

that is, a trigonometric polynomial with coefficients βi .
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Example.

χm(9) ≥ 1−
max
u∈R2

β1 e
−2πi⟨u,v1⟩ + . . .+ β6 e

−2πi⟨u,v6⟩

min
u∈R2

β1 e−2πi⟨u,v1⟩ + . . .+ β6 e−2πi⟨u,v6⟩
.

The symmetry group of 9 is W := D6 (reflection + rotation).
The vertices form an orbit, that is, W · v1 = {v1, v2, v3, v4, v5, v6}.

Theorem. (Bourbaki 1965)
If vi ∈ W · vj ⇒ βi = βj , then the Fourier transformation β̂(u) can

be written as a classical polynomial β̂(z) on the orbit space z(Rn).
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Theorem. (Bourbaki 1965)
If vi ∈ W · vj ⇒ βi = βj , then the Fourier transformation β̂(u) can

be written as a classical polynomial β̂(z) on the orbit space z(Rn).

Theorem. (Procesi, Schwarz 1985; Hubert, M, Riener 2021)
The orbit space z(Rn) is a compact basic semi-algebraic set.

Example.

χm(9) ≥ 1−
max
u∈R2

β̂(u)

min
u∈R2

β̂(u)
= 1−

max
z1∈[−1/2, 1]

β1 z1

min
z1∈[−1/2, 1]

β1 z1
= 1− 1

−1/2
= 3.
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Example.
χm(9) ≥ 3.

To improve the bound, we add more boundary points.

Let supp(β) = D6 · v1 ∪D6 · v7 and βi = 1/3, βj = 2/3. Then

χm(9) ≥ 1−
max
z

βi (6z
2
1 − 2z1 − 2z2 − 1) + βjz2

min
z

βi (6z21 − 2z1 − 2z2 − 1) + βjz2
≃ 3.57.
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Example.

χm(9) ≥ 1−
max
z

βi (6z
2
1 − 2z1 − 2z2 − 1) + βjz2

min
z

βi (6z21 − 2z1 − 2z2 − 1) + βjz2
≃ 3.57.

Hence, at least 4 colors are required for the graph avoiding 9.
This is indeed sufficient.
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Computational aspects



Question: How to determine optimal coefficients βi , βj , . . .?

Lemma.
We have max

z
β̂(z) =

∑
i
βi .

Corollary.

We have χm(S) ≥ 1− 1
F (r) , where

F (r) := max∑
i βi=1

min
z

β̂(z).

Here, the maximum is taken over all positive Borel measures β,
which are supported on r orbits W · vi ⊆ S .

Computing F (r) is a max–min polynomial optimization problem.

Answer: We use a Lasserre hierarchy
F (r , 1) ≤ F (r , 2) ≤ . . . ≤ F (r , d) → F (r) for d → ∞.
Asymptotic convergence in d happens in polynomial time.
Finite convergence in d can be certified with flat extension.

15 / 19



Question: How to certify convergence in r?
(More precisely, when is χm(S) = 1− 1

F (r ,d) for r , d → ∞?)

Answer: It is an open problem.
In general, 1− 1

F (r) → χm(S) is NOT true for r → ∞.
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Question: How to rewrite β̂(u) as β̂(z(u))?

Answer: In theory, apply multiplicative invariant theory.
In practice, the procedure is implemented
https://github.com/TobiasMetzlaff/GeneralizedChebyshev .
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https://github.com/TobiasMetzlaff/GeneralizedChebyshev


Example. (numerical bounds)

χm(∂ octahedron) ≥ 6.28

χm(∂ rhombic dodecahedron) ≥ 6.12

χm(∂ icositetrachoron) ≥ 10.02
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