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Let A be a graded real ∗-algebra.
A sum of squares (SOS) is an element of the form

q =
∑
t∈T

qt q
∗
t

with T a finite index set and qt ∈ A.

In this talk: Exploit algebraic structures for verification of
existence and computation of such representations.
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Historical Motivation and Applications



1 Hilbert, 1888:
“Given n, r ∈ N, every nonnegative polynomial
f ∈ A := R[X1, . . . ,Xn] of degree 2r is a sum of squares.”
⇔ (n, 2r) ∈ {(1, 2r), (n, 2), (2, 4)}

2 Motzkin, 1967:
f = X 4

1 X 2
2 + X 2

1 X 4
2 + 1− 3X 2

1 X 2
2

is nonnegative but not a sum of squares.

3 Positivstellensatz :
A theorem that states the existence of an SOS-representation.
Schmüdgen, 1991; Putinar, 1996.

Marshall, 2008:
Positive Polynomials and Sums of Squares.
https://bookstore.ams.org/surv-146/
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Applications

Let f , g1, . . . , gℓ ∈ R[X ], K := {X ∈ Rn | g1(X ), . . . , gℓ(X ) ≥ 0}.

f ∗ = min f (X )
s.t. X ∈ K

= max λ
s.t. λ ∈ R,

f − λ ≥ 0 on K

(POP)

Truncated Quadratic Module

QMr (g) := {q0 +
ℓ∑

k=0

qk gk | qk is SOS of degree ≤ 2r}

Lasserre Hierarchy, 2001

f ∗ ≥ f rsos := max λ
s.t. λ ∈ R,

f − λ ∈ QMr (g)

with f rsos → f ∗ for r → ∞ under certain assumptions (Putinar).

5 / 21



Applications

Korda, Henrion, Jones, 2013:
Computing a maximal positive invariant (MPI) set
of a dynamical system Ẋ (t) = F (X (t)).

Ozawa, 2016:
“A finitely generated group G has Kazhdan’s property (T)”
⇔ ∃λ > 0 : ∆2 − λ∆ is SOS in R[G] with Laplacian ∆.

To summarize...

Explicit SOS-certificates give not only an optimal solution,
but also an optimizer, in which the solution is attained.

In practice: converging hierarchy of semidefinite (numerical)
lower bounds by restriction of degree.

Goal: Handle size of computation through exploitation of
algebraic structures.
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Symmetry Reduction



Symmetry in Nature and Science

Source: Wikipedia/AMS
Gosset polytope drawn BY HAND (!) by Peter McMullen, 1960s
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Some Representation Theory

Let G be a finite group.

1 Two elements σ, σ̃ ∈ G are called conjugate, if στ = τ σ̃ for
some τ ∈ G.

2 A G-module W is a vector space together with a group
homomorphism ρW : G → GL(W ), called representation.

3 A G-module W is called irreducible, if its only G-submodules
are 0 and W itself.

Fact

# nonisom. irred. G-modules = # conjugacy classes =: h

Serre, 1977:
Linear Representations of Finite Groups.
https://link.springer.com/book/10.1007/978-1-4684-9458-7
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Decomposition into irreducibles

s = (1, 6)(2, 5)(3, 4) r = (1, 2, 3, 4, 5, 6)

D2·6 = ⟨s, r | s2 = r6 = (sr)2 = e⟩ “dihedral group of order 12”
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Decomposition into irreducibles

s = (1, 6)(2, 5)(3, 4) r = (1, 2, 3, 4, 5, 6)

Consider the 6-dimensional representation

ρ : D2·6 → GL(R6), s 7→

 1
1

1
1

1
1

, r 7→

 1
1

1
1

1
1

 .

The D2·6-module R6 can be decomposed into irreducibles

R6 = ⟨

1
1
1
1
1
1

⟩ ⊕ ⟨

 1
−1
1

−1
1

−1

⟩ ⊕ ⟨

 2
1

−1
−2
−1
1

,

 0
1
1
0

−1
−1

⟩ ⊕ ⟨

 2
−1
−1
2

−1
−1

,

 0
1

−1
0
1

−1

⟩.

The induced action on R[X1, . . . ,X6] is f
σ(X ) := f (ρ(σ−1) · X ).
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Setup

Let A = A0 ⊕ A1 ⊕ A2 ⊕ . . . with Ar finite dimensional
and G ⊆ GL(A) be a finite group with a linear action

G × Ar → Ar , (σ, f ) 7→ f σ.

Isotypic Decomposition

Ar ⊗R C =
h⊕

i=1

m
(i)
r⊕

j=1

V
(i)
j

h number of irreducible characters of G with multiplicities m
(i)
r

and V
(i)
1 , . . . ,V

(i)

m
(i)
r

pairwise isomorphic irreducible G-modules.

Reynolds Operator

RG(f ) :=
1

|G|
∑
σ∈G

f σ
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Symmetric SOS

Observation (for fixed degree r)

If S is a basis for Ar and Q = (Q∗)t ⪰ 0 is a Hermitian psd matrix
of size |S | with entries in A0, then

f = (S∗)t ·Q · S ∈ A2r

is a sum of squares, where S is the vector of basis elements.

Proposition

Let f ∈ AG ∩ A2r and S (i) ⊂ Ar contain exactly one nonzero

element of each V
(i)
j , with 1 ≤ j ≤ m

(i)
r . If f is a sum of squares in

A, then there exist Q(i) = ((Q(i))∗)t ⪰ 0 of size m
(i)
r , such that

f =
h∑

i=1

RG
(
((S(i))∗)t ·Q(i)

r · S(i)
)
.
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Informal Consequence

“The matrix of a symmetric SOS-certificate over Ar has h blocks,

each consisting of di many identical blocks of size m
(i)
r .”

dim(Ar ) =
h∑

i=1

di m
(i)
r di := dim(V

(i)
1 ) = . . . = dim(V

(i)

m
(i)
r

)



[
■ ■
■ ■

]
[
■ ■
■ ■

]
■ ■ ■
■ ■ ■
■ ■ ■




Remark

Change of basis does not effect the trace. Hence, dense and
symmetric relaxations (SDP) have the same theoretical value.
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Sparsity Exploitation



What is sparsity and where does it appear?

Correlative Sparsity:
f = X1 X2 + X2 X3 + . . .+ X99 X100

Term Sparsity:
f = X1 X

99
2 + X 99

1 X2

Deep learning (robustness, computer vision)

Power systems (optimal power flow, stability)

Quantum systems (condensed matter)
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Motzkin is not SOS

Recall: fMotzkin = 1−3X 2
1 X 2

2 + X 4
1 X 2

2 + X 2
1 X 4

2

is nonnegative but not a sum of squares (Motzkin, 1967).

Reznick, 1978

If f =
∑

t q
2
t , then NewtonPoly(qt) ⊆ 1

2NewtonPoly(f ).

Hence, if fMotzkin was SOS, then

fMotzkin =
∑

(a 1 + b X1 X2 + c X 2
1 X2 + d X1 X

2
2 )

2

and thus −3 =
∑

b2 :(
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Encoding and Exploiting Sparsity

B =


1 0 1 0
0 1 0 0
1 0 1 1
0 0 1 1

 with B =


1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1


1

3 4

2

Idea: Instead of sums of squares of the form

f = (S)t ·Q · (S)∗,
consider

f̃ = (S)t · (B ◦Q) · (S)∗,
where S is a vector of basis elements and B a binary matrix.

Magron & Wang, 2023:
Sparse Polynomial Optimization.
https://www.worldscientific.com/worldscibooks/10.1142/q0382
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Symmetry-adapted TSSOS Hierarchy

f ∗ = max λ
s.t. λ ∈ R,

f − λ ≥ 0
on K

≥ f r ,ssos := max f1 −
∑

k,i tr(A
(i)
r ,s,k,1 ·Q

(i)
k )

s.t. Q
(i)
k ∈ Sym

(i)
r−dk

(B
(i)
r ,s,k)

Q
(i)
k ⪰ 0, ∀ j ≥ 2 :

fj =
∑

k,i tr(A
(i)
r ,s,k,j ·Q

(i)
k ),

r : degree of approximation
s: level of sparsity

A
(i)
r ,s,k,j : sparse coefficient matrices in the symmetry basis

B
(i)
r ,s,k : binary matrices encoding sparsity

Theorem

For fixed degree r ≥ rmin, the sequence (f r ,ssos )s≥1 is monotonously
nondecreasing with f r ,∗sos = f rsos.
For fixed sparsity order s ≥ 1, the sequence (f r ,ssos )r≥rmin is
monotonously nondecreasing.

Outlook: Correlative sparsity, Complex Noncommutative Variables 20 / 21



Thank You.

https://github.com/wangjie212/TSSOS
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