Combining Sparsity and Symmetry for SOS-Certificates

Igor Klep, Victor Magron, Tobias Metzlaff, Jie Wang

30th International Conference on Applications of Computer Algebra Algebraic and Algorithmic Aspects of Differential and Integral Operators

July 2025, Heraklion

Let A be a graded real *-algebra.

A sum of squares (SOS) is an element of the form

$$q = \sum_{t \in T} q_t \ q_t^*$$

with T a finite index set and $q_t \in A$.

In this talk: Exploit algebraic structures for verification of existence and computation of such representations.

Content

- 4 Historical Motivation and Applications
- Symmetry Reduction
- Sparsity Exploitation

Historical Motivation and Applications

• Hilbert, 1888: "Given $n, r \in \mathbb{N}$, every nonnegative polynomial $f \in A := \mathbb{R}[X_1, \dots, X_n]$ of degree 2r is a sum of squares." $\Leftrightarrow (n, 2r) \in \{(1, 2r), (n, 2), (2, 4)\}$

② Motzkin, 1967: $f = X_1^4 X_2^2 + X_1^2 X_2^4 + 1 - 3 X_1^2 X_2^2$ is nonnegative but *not* a sum of squares.

Ositivstellensatz: A theorem that states the existence of an SOS-representation. Schmüdgen, 1991; Putinar, 1996.

Marshall, 2008:

POSITIVE POLYNOMIALS AND SUMS OF SQUARES. https://bookstore.ams.org/surv-146/

Applications

Let
$$f, g_1, \dots, g_\ell \in \mathbb{R}[X]$$
, $K := \{X \in \mathbb{R}^n \, | \, g_1(X), \dots, g_\ell(X) \geq 0\}$.

$$f^* = \min_{\substack{\text{s.t.} \ X \in K}} f(X) = \max_{\substack{\text{s.t.} \ \lambda \in \mathbb{R}, \\ f - \lambda \ge 0 \text{ on } K}} (POP)$$

Truncated Quadratic Module

$$\operatorname{QM}_r(g) := \{q_0 + \sum_{k=0}^{\ell} q_k \, g_k \, | \, q_k \text{ is SOS of degree } \leq 2r\}$$

Lasserre Hierarchy, 2001

$$f^* \geq f^r_{\mathrm{sos}} := \max \quad \lambda$$
 s.t. $\lambda \in \mathbb{R},$ $f - \lambda \in \mathrm{QM}_r(g)$

with $f_{\text{sos}}^r \to f^*$ for $r \to \infty$ under certain assumptions (Putinar).

Applications

- Korda, Henrion, Jones, 2013: Computing a maximal positive invariant (MPI) set of a dynamical system $\dot{X}(t) = F(X(t))$.
- Ozawa, 2016: "A finitely generated group $\mathfrak G$ has *Kazhdan's property* (T)" $\Leftrightarrow \exists \, \lambda > 0 : \, \Delta^2 - \lambda \, \Delta$ is SOS in $\mathbb R[\mathfrak G]$ with Laplacian Δ .

To summarize...

- Explicit SOS-certificates give not only an optimal solution, but also an optimizer, in which the solution is attained.
- In practice: converging hierarchy of semidefinite (numerical) lower bounds by restriction of degree.
- Goal: Handle size of computation through exploitation of algebraic structures.

Symmetry Reduction

Symmetry in Nature and Science

Maryna Viazovska

For the proof that the E_8 lattice provides the densest packing of identical spheres in 8 dimensions, and further contributions to related extremal problems and interpolation problems in Fourier analysis.

citation | video | popular scientific exposition | CV/publications

Source: Wikipedia/AMS

Gosset polytope drawn BY HAND (!) by Peter McMullen, 1960s

Some Representation Theory

Let G be a finite group.

- **1** Two elements $\sigma, \tilde{\sigma} \in G$ are called **conjugate**, if $\sigma \tau = \tau \tilde{\sigma}$ for some $\tau \in G$.
- **2** A **G-module** W is a vector space together with a group homomorphism $\rho_W: G \to \mathrm{GL}(W)$, called **representation**.
- **3** A *G*-module *W* is called **irreducible**, if its only *G*-submodules are 0 and *W* itself.

Fact

The number h of nonisomorphic irreducible G-modules is equal to the number of conjugacy classes.

Serre, 1977:

LINEAR REPRESENTATIONS OF FINITE GROUPS. https://link.springer.com/book/10.1007/978-1-4684-9458-7

Setup

Let $A = A_0 \oplus A_1 \oplus A_2 \oplus ...$ with A_r finite dimensional and $G \subseteq GL(A)$ be a finite group with a linear action

$$G \times A_r \rightarrow A_r, (\sigma, f) \mapsto f^{\sigma}.$$

Isotypic Decomposition

$$A_r \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{i=1}^h \bigoplus_{j=1}^{m_r^{(i)}} V_j^{(i)}$$

h number of irreducible characters of G with multiplicities $m_r^{(i)}$ and $V_1^{(i)}, \ldots, V_{m_r^{(i)}}^{(i)}$ pairwise isomorphic G-modules.

We write $f \in A^G$ if $f^{\sigma} = f$ for all $\sigma \in G$.

Reynolds Operator

$$\mathcal{R}^{\mathcal{G}}: A \to A^{\mathcal{G}}, \ f \mapsto \mathcal{R}^{\mathcal{G}}(f) := \frac{1}{|\mathcal{G}|} \sum_{\sigma \in \mathcal{G}} f^{\sigma}.$$

Symmetric SOS

Observation (for fixed degree r)

If S is a basis for A_r and $\mathbf{Q} = (\mathbf{Q}^*)^t \succeq 0$ is a Hermitian psd matrix of size |S| with entries in A_0 , then

$$f = (\mathbf{S})^t \cdot \mathbf{Q} \cdot (\mathbf{S})^* \in A_{2r}$$

is a sum of squares, where **S** is the vector of basis elements.

Proposition

Let $f \in A^G \cap A_{2r}$ and $S^{(i)} \subset A_r$ contain exactly one nonzero element of each $V_j^{(i)}$, with $1 \leq j \leq m_r^{(i)}$. If f is a sum of squares in A, then there exist $\mathbf{Q}^{(i)} = ((\mathbf{Q}^{(i)})^*)^t \succeq 0$ of size $m_r^{(i)}$, such that

$$f = \sum_{i=1}^{h} \mathcal{R}^{\mathcal{G}} \left((\mathbf{S}^{(i)})^t \cdot \mathbf{Q}_r^{(i)} \cdot (\mathbf{S}^{(i)})^* \right).$$

Informal Consequence

"The matrix of a symmetric SOS-certificate over A_r has h blocks, each consisting of d_i many identical blocks of size $m_r^{(i)}$."

$$\dim(A_r) = \sum_{i=1}^h d_i \, m_r^{(i)} \qquad d_i := \dim(V_1^{(i)}) = \ldots = \dim(V_{m_r^{(i)}}^{(i)})$$

Remark

Change of basis does not effect the trace. Hence, dense and symmetric relaxations (SDP) have the same theoretical value.

Sparsity Exploitation

What is sparsity and where does it appear?

- Correlative Sparsity: $f = X_1 X_2 + X_2 X_3 + ... + X_{99} X_{100}$
- Term Sparsity: $f = X_1 X_2^{99} + X_1^{99} X_2$

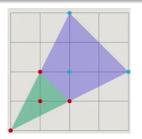
- Deep learning (robustness, computer vision)
- Power systems (optimal power flow, stability)
- Quantum systems (condensed matter)

Motzkin is not SOS

Recall: $f_{\text{Motzkin}} = 1 - 3X_1^2X_2^2 + X_1^4X_2^2 + X_1^2X_2^4$ is nonnegative but *not* a sum of squares (Motzkin, 1967).

Reznick, 1978

If
$$f = \sum_t q_t^2$$
, then NewtonPoly $(q_t) \subseteq \frac{1}{2}$ NewtonPoly (f) .



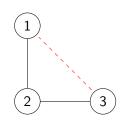
Hence, if f_{Motzkin} was SOS, then

$$f_{\text{Motzkin}} = \sum (a \mathbf{1} + \underline{b X_1 X_2} + c X_1^2 X_2 + d X_1 X_2^2)^2$$

and thus
$$-3 = \sum b^2$$
:(

Encoding and Exploiting Sparsity

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & \mathbf{0} \\ 1 & 1 & 1 \\ \mathbf{0} & 1 & 1 \end{pmatrix} \text{ with } \overline{\mathbf{B}} = \begin{pmatrix} 1 & 1 & \mathbf{1} \\ 1 & 1 & 1 \\ \mathbf{1} & 1 & 1 \end{pmatrix}$$



<u>Idea</u>: Instead of sums of squares of the form

$$f = (\mathbf{S})^t \cdot \mathbf{Q} \cdot (\mathbf{S})^*,$$

consider

$$\tilde{f} = (\mathbf{S})^t \cdot (\mathbf{B} \circ \mathbf{Q}) \cdot (\mathbf{S})^*,$$

where ${\bf S}$ is a vector of basis elements and ${\bf B}$ a binary matrix.

Magron & Wang, 2023: SPARSE POLYNOMIAL OPTIMIZATION. https://www.worldscientific.com/worldscibooks/10.1142/q0382

Symmetry-adapted TSSOS Hierarchy

$$\begin{array}{lll} f^* = & \max & \lambda & \geq f_{\operatorname{sos}}^{r,s} := & \max & f_1 - \sum_{k,i} \operatorname{tr}(\mathbf{A}_{r,s,k,1}^{(i)} \cdot \mathbf{Q}_k^{(i)}) \\ & \text{s.t.} & \lambda \in \mathbb{R}, & \\ & f - \lambda \geq 0 & \\ & \text{on } K & & \\ & & f_j = \sum_{k,i} \operatorname{tr}(\mathbf{A}_{r,s,k,j}^{(i)} \cdot \mathbf{Q}_k^{(i)}), \end{array}$$

r: degree of approximation

s: level of sparsity

 $\mathbf{A}_{r,s,k,j}^{(i)}$: coefficient matrices in the symmetry basis

 $\mathbf{B}_{r,s,k}^{(i)}$: binary matrices encoding sparsity

Theorem

For fixed degree $r \ge r_{\min}$, the sequence $(f_{\cos}^{r,s})_{s\ge 1}$ is monotonously nondecreasing with $f_{\cos}^{r,*} = f_{\cos}^{r}$.

For fixed sparsity order $s \ge 1$, the sequence $(f_{\text{sos}}^{r,s})_{r \ge r_{\min}}$ is monotonously nondecreasing.

Outlook: Convergence rate, Complex variables, Noncommutative

17 / 18

Thank You.

https://github.com/wangjie212/TSSOS