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etry and representation theory.
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1 State of the Art

Optimization is the problem of determining the optimal configuration of an object. Mathematically, this means to

compute the minimum of a map over an ordered field, the objective function, under given constraints, defining the

feasible region. The case of optimization I consider is the one, where the objective function and the constrains are

algebraic, such as elements of polynomial rings, algebraic groups or operator algebras. The polynomial optimiza-

tion problem for example is nonconvex, infinite-dimensional and NP-hard. Under certain algebraic and geometric

assumptions however, one can approximate theminimum: The optimization problem can be rewritten to the prob-

lem of certifying whether a polynomial is positive on the feasible region. This leads to a hierarchy of lower bounds,

stemming from convex finite-dimensional optimization problems, which are solvable through numerical methods

[Las01, Par03]. Throughout, this approach is referred to as the Lasserre hierarchy.

Since Emil Artin’s solution of David Hilbert’s 17-th problem in 1927, the study of positivity certificates has been es-

sential to algebraic geometry and neighboring fields of mathematics. Examples are the “Positivstellensätze” of Kriv-

ine, Stengle, Schmüdgen, Putinar [Kri64, Ste74, Sch91, Put93], and the matrix versions due to Kojima, Hol, Scherer

[Koj03, HS05]. In the Lasserre hierarchy, positivity is replaced with having a sums-of-squares representation, the

necessary condition of Putinar’s Positivstellensatz. By restricting the polynomial degree of the sums of squares, one

obtains a hierarchy of semi-definite lower bounds, which converge to the optimal value. The degree at each step

is the order of the hierarchy. Raising the order improves the quality of the bound but increases the computational

cost. Recent advances on the hierarchy are to be found in [HKL21].

In practice, these sums-of-squares representations are modeled through semi-definite programs. A semi-definite

program (SDP) is an optimization problem over positive semi-definite matrices and solvable with a variety of nu-

merical techniques, see [VB96]. The number of SDP variables, that is, the number of distinct matrix entries, grows

polynomially along with the order of the Lasserre Hierarchy. Hence, techniques to reduce the cost are essential

for efficiency. To achieve this, the keyword in my research is symmetry. If symmetry in the data of the problem is

detected, then this can be exploited. Symmetry-adapted bases for example have seen the size of SDPs decrease and

have proven to be successful in the study of optimization problems [GP04, Val08].

I focus on a particular kind of symmetry, which is called crystallographic, and provides optimal configurations for

a variety of problems in computer science. Consider for example the hexagon in Figure 1. Hexagonal patterns are

classically known to be optimal for sampling, packing, covering, and quantization in the plane [CS99, KAH05], but

also proved, or conjectured, to be optimal for energyminimization problems [PS20, BF23]. The hexagonal symmetry

is capturedmathematically by a structure that is calledA2. Another relevant structure calledE8was recently proven

to give an optimal solution for the sphere packing problem and a large class of energyminimization problems in the

8-dimensional space [Via17, CKM
+
22]. From an approximation point of view, such structures describe Gaussian

cubatures [LX10, MP11], a rare occurence on multidimensional spaces. In a different direction, the triangulations

associated with such symmetries are relevant in graphics and computational geometry, see for instance [CKW20].

To be able to develop, implement and apply models of these symmetric structures and the problems they arise in,

a strong background in representation theory and geometry is required. Indeed, what was called “structure” above

originates from the classification of the simple Lie algebras in families An−1,Bn,Cn,Dn,E6,E7,E8,F4,G2, see

[Bou68, Ch. VI, §4]. On a fundamental level, crystallographic symmetry is often described by two objects. The first

is a group W , that is, a set of invertible transformations over an n-dimensional space Rn
. The second is a lattice

Ω, that is, a discrete additive set of points in the space Rn
including the origin 0, which is stable under the group

transformations. This setup is called a group action ofW on Ω.
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Figure 1: A hexagon in the plane is a symmetric object: Rotation of the darker shaded region on the left by an angle of

π/3 allows the description of the whole hexagon while only having knowledge about a smaller subset. The rotation

is a group transformation, encoded by the hexagonal lattice on the right, known asA2.

Polynomial optimization is a common task in this context, occurring, for example, in filter design [Dum07], graph

coloring [BDOV14], and optimal power flow [BWFW08, JM18]. One considers real-valued functions f onRn
, which

are square-integrable and Ω∨
-periodic. The latter means that, whenever λ ∈ Rn

is such that the Euclidean scalar

product ⟨µ, λ⟩ is an integer, then f(u+ λ) = f(u) for all u ∈ Rn
. Such functions have a Fourier expansion

f(u) =
∑
µ∈Ω

fµ exp(−2πi ⟨µ, u⟩),

with coefficients fµ ∈ R, see [DM85] and [CS99, Ch. 9, §2]. The task is to compute the minimum

f∗ := min
u∈Rn

f(u) = min
u∈Rn

∑
µ∈Ω

fµ exp(−2πi ⟨µ, u⟩)

which is assumed in some minimizer u∗ inside the periodicity domain.

If, for every transformation s ∈ W and for every lattice element µ ∈ Ω, the coefficients of the objective function

satisfy fs(µ) = fµ, then f is called invariant. For the applications cited above, f can be assumed to be invariant

without loss of generality and it is this property that is sought to be exploited in an optimization context.

To solve the problem of computing f∗
numerically, the Lasserre hierarchy is a semi-definite relaxation technique

that has been developed and improved over the past decades, see for example [Las01, Par03, Dum07, JM18]. The

technique boils down to approximate the objective function f through polynomials of bounded degree d over a

convex cone (more precisely, through sums of squares) and leads to a hierarchy of lower bounds

f (d) ≤ f (d+1) ≤ f (d+2) ≤ . . . ≤ f∗

with f (d)
converging to f∗

for d → ∞. Computing f (d)
is now a semi-definite program (SDP).

Exploiting symmetry in semi-definite programs has proven to be effective in the past, see [GP04]. One also deduces

from [RTJL13] that a mathematical understanding of the symmetry is fruitful, although therein the authors consider

different functions with another kind of invariance. Finally, the exploitation of sign symmetry for the integer lattice

has been addressed for the univariate case in [Dum07] and more recently in [KdK23].

2 Scientific Contributions

I will now describe two symmetry reduction techniques to which I contributed, their novelty and the involved

collaborations. Furthermore, I will describe the functionality of a Maple software package that I have developed

for computational purposes.
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Mydoctorate with EvelyneHubert (Sophia Antipolis, FR) at Inria d’Université Côte d’Azurwas part of the European

Marie Skłodowska-Curie project POEMA, a network of 15 doctoral students with the goal to gain efficiency in

optimization through moment theory and algebraic structures. My thesis [Met22] covers the contributions from

Sections 2.1 and 2.2. These are based on joint work with Hubert, Philippe Moustrou (Toulouse, FR) and Cordian

Riener (Tromsø, NO) that was initiated during a secondment in Tromsø, that I conducted at the beginning of my

second PhD year. My role in this collaboration was to write the articles, proof the theorems and implement the

algorithms under the supervision and guidance of Hubert and Riener. Moustrou provided us with an application

in graph coloring, see Section 2.2.

After the PhD, I started a postdoc position at the University of Kaiserslautern-Lautern with Ulrich Thiel (Kaiser-

slautern, DE). During those two years, I conducted mostly independent research that has lead to one single author

paper, see Section 2.3, and one joint work with Sebastian Debus (Chemnitz, DE), see Section 2.4.

2.1 Orbit Space Reductions

By Bourbaki’s theorem on fundamental invariants [Bou68, Ch. VI, §3], any invariant function f can be rewritten

uniquely as a polynomial in terms of so called fundamental invariants. This means that there are some distin-

guished invariants θ1, . . . , θn, such that

f(u) = g(θ1(u), . . . , θn(u)) =: g(θ(u))

for some unique n-variate polynomial g. In particular, the optimization problem becomes

f∗ = min
u∈Rn

f(u) = min
u∈Rn

g(θ(u)) = min
z∈θ(Rn)

g(z).

When going back to the example of the hexagon in Figure 1, this rewriting strategy implies that instead of consider-

ing a function over the entire hexagon, one may reduce to a small subset, namely the darker shaded triangle. More

precisely, orbit space reduction reduces the number of SDP variables in the Lasserre hierarchy by the cardinality of

the groupW , that is, the number of transformations.

There are two problems to be overcome:

1. The polynomial g must be computed.

2. The new feasible region θ(Rn), that is, the image of the space under the fundamental invariants, must be

described. The latter is also called the orbit space ofW .

The computation of g becomes trivial with the theory behind symmetries. Indeed, one can use a partial ordering

to show that any invariant f can be rewritten as

f(u) =
∑
µ∈Ω+

fµ exp(−2πi ⟨µ, u⟩) + lower-order-terms,

where no two lattice elements inΩ+
can be obtained from one another throughW-transformations and the lower-

order-terms are obtained from the elements in Ω+
, see [Bou68, Ch. VI, §3]. Using the definition of generalized

Chebyshev polynomials Tµ from [HW88, MNR13, HS22] one finds the polynomial expression

f(u) =
∑
µ∈Ω+

fµ Tµ(θ(u)) and in particular g(z) =
∑
µ∈Ω+

fµ Tµ(z).

Together with Hubert and Riener, we solved the second problem, the description of the orbit space for the lattices

An−1,Bn,Cn,Dn and G2 in [HMR24]. In this article, we use the fact that the corresponding group W has a

particularly nice structure, allowing the use of tools from algebraic geometry [CLO05]. Our main result is the

construction of a polynomial matrix P so that a point z ∈ Rn
is contained in the orbit space if and only if the

matrixP(z) is positive semi-definite. In particular, the optimization problem becomes

f∗ = min
P(z)⪰0

∑
µ∈Ω+

fµ Tµ(z).
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Our description is explicit in the sense that we give a closed formula for the matrix polynomialP in the Chebyshev

basis, that reads

P =



T0 − T2 e1
Te1

− T3 e1
T0 − T4 e1

2Te1
− T3 e1

− T5 e1
· · ·

Te1 − T3 e1
T0 − T4 e1

2Te1 − T3 e1
− T5 e1

2T0 + T2 e1
− 2T4 e1

− T6 e1
· · ·

T0 − T4 e1
2Te1

− T3 e1
− T5 e1

2T0 + T2 e1
− 2T4 e1

− T6 e1
5Te1

− T3 e1
− 3T5 e1

− T7 e1
· · ·

2Te1
− T3 e1

− T5 e1
2T0 + T2 e1

− 2T4 e1
− T6 e1

5Te1
− T3 e1

− 3T5 e1
− T7 e1

5T0 + 4T2 e1
− 4T4 e1

− 4T6 e1
− T8 e1

· · ·
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

 ,

where e1, e2, . . . are the generators of the lattice. For the four remaining exceptional casesE6,E7,E8 andF4, such

a matrix polynomial can be computed using [PS85].

A quantitative analysis of the computational gain is to be found in Section 2.3.

Figure 2: The objective function f(u) (left) is an invariant with many amplitudes, symmetry and periodicity.

Through orbit space reduction, it can be rewritten as amuch simpler function g(z) on a new feasible region, defined

by matrix positivityP(z) ⪰ 0 (right).

2.2 Spectral Bounds for Set Avoiding Graphs

I was made aware by Moustrou during the secondment in Tromsø that the chromatic number problem can be

approached by computing theminimumof an invariant with further outer optimization constraints. The additional

difficulty of this problem was overcome in a joint article in Mathematical Programming [HMMR24]. We give new

theoretical proofs and numerical bounds for the chromatic numbers of several graphs. Our goal was primarily to

compute and test the so called spectral bound and to find cases where it is sharp.

The graphs we consider are infinite with vertices V = Rn
, the entire Euclidean space. Given a bounded centrally

symmetric subset S ⊆ Rn
, two vertices u, v are connected by an edge, if and only if their difference u − v is

contained in S. This set avoiding graph is denoted G(V, S). The chromatic number χm(V, S) is the minimal

possible cardinality ofG(V, S) in independent sets, that is, theminimal number of colors needed to paint the graph,

so that two connected vertices do not share the same color. It is not a priori evident that this number even exists

and its computation has been the goal of several works since the Hadwiger-Nelson problem, see [Soi09, Gre18].

In [HMMR24], we study several examples of such graphs under the assumption that the avoided set S is W-

symmetric. Using [BDOV14], one can prove under these assumptions the lower spectral bound

χm(V, S) ≥ 1− 1

max
f

f∗ ,

where the maximum is taken over all normalizedW-invariants f supported on the intersection of S with Ω with

minimum f∗
. We computed the minimum through the technique in Section 2.1 with generalized Chebyshev poly-

nomials.

Beyond the numerical lower bounds obtained on the chromatic numbers of several graphs, our results can be an-

alyzed through several different points of view. We show how the reformulation in terms of Chebyshev polyno-

mials may lead to simple analytic computations of the spectral bound for discrete graphs previously estimated in
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[DMMV19]. Subsequently, this allowed us to compute estimates on the spectral bound for other infinite graphs

that were so far studied only with different, mostly combinatorial, tools. Table 1 shows a comparison between our

approach and previous best known results that used different techniques.

Note that the spectral bound is just a lower bound and not an approximation of the chromatic number. The im-

portant conclusion of our work is that the spectral bound is not sharp for some polytopes, which leaves open the

problem of classifying these cases.

Figure 3: The graph R2
avoiding the hexagon (without the interior!) can be painted with four colors. The point in

the origin •, which has assigned the color red, must not share the same color with any other point on the hexagon.

With a combinatorial argument, one can conclude that three colors are not sufficient [BBMP19]. This is also the

conclusion from our computation in Table 1, by which the chromatic number (an integer!) is 3.57.

V S previous lower bound for χm(V, S) our estimate [HMMR24]

Z3 3-dim. crosspolytope with radius 4 7 > 6.30

Z4 4-dim. crosspolytope with radius 4 9 > 10.86

Zn n-dim. crosspolytope with odd radius 2 2

Zn n-dim. crosspolytope with radius 2 2n 2n

R2
hexagon 4 > 3.57

R3
rhombic dodecahedron 8 > 6.10

R4
icositetrachoron 15 > 10.02

Rn n-dim. cube 2n 2n

Table 1: Comparison of the previous lower bounds on the chromatic number χm(V, S) and our estimates on the

spectral bounds (V vertices, S avoided set). The color of the table entry indicates whether our estimate is worse,

better or confirms a previous one.

2.3 Reduction via Symmetry Adapted Bases and Comparison

The technique inmy thesis relies on first exploiting the symmetry of the trigonometric polynomial by rewriting it in

terms of Chebyshev polynomials, and afterwards applying SOS reinforcements. The order can be reversed, meaning

that one first applies a semi-definite relaxation and then exploits symmetry. I proposed a new complementary

technique at the ISSAC’23 conference [Met23], which was published later in the Journal of Symbolic Computation

[Met25].

The problem of computing f∗
can be rewritten to the problem of computing the maximal Trace(mat(f)X),

wheremat(f) is an infinite matrix representation of a trigonometric polynomial andX is a positive semi-definite

Toeplitz matrix. Truncation at degree d leads to a Lasserre hierarchy

f∗ ≥ fd := min
X∈Toepd

Trace(mat(f)X) s.t. X ⪰ 0, Trace(X) = 1,

see also [Dum07]. In the article, I equipToepd with aW-representation and show that, if f isW-invariant, one can

restrict X to the space of invariant Toeplitz matrices ToepWd , which preserves the optimal value. With respect to

the isotypic decomposition [Ser77] ofToepd as aW-module into irreducibles, one can thus compute a symmetry

adpated basis in which the SDPmatrices are block diagonal. This leads to smallermatrices in the Lasserre hierarchy.
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For example, for a groupW with 3 irreducible representations, an invariant Toeplitz matrix with 72 = 49 entries
only has 22 + 22 + 32 = 17 entries with respect to a symmetry adapted basis, that is,

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■


→



[
■ ■
■ ■

]
[
■ ■
■ ■

]
■ ■ ■
■ ■ ■
■ ■ ■




.

I will now compared the computational cost of the two approaches discussed so far in terms of the sizes of the

blocks of the SDPmatrices. Denote by |Ωd| the number of lattice elements that support trigonometric polynomials

up to degree d.

• no symmetry reduction: |Ωd|2 (1 Hermitian block).

• orbit space reduction:
|Ωd|2+n2 |Ωd−n|2

|W|2 (2 real symmetric blocks).

• symmetry adapted bases:

#irrep.∑
i=1

di

(
m

(d)
i

)2
(#irrep. Hermitian blocks with di equal subblocks.

Here, #irrep. is the number of irreducible representations ofW with dimension di and multiplicitym
(d)
i ).

The observation from Table 2 is that the orbit space reduction yields smaller SDP matrices with less blocks. The

downside is that the setup in the Chebyshev basis is more difficult a requires a largerminimal order of the hierarchy.

W\d 2 3 4 5 6

B2 6, 2 10, 6 15, 12 21, 20 28, 30

6, 3, 3, 1, 6 10, 6, 6, 3, 12 15, 10, 10, 6, 20 21, 15, 15, 10, 30 28, 21, 21, 15, 42

A2 − 10, 3 15, 9 21, 18 28, 30

6, 1, 6 10, 3, 12 15, 6, 20 21, 10, 30 28, 15, 42

G2 − 6, 3 9, 6 12, 12 16, 18

4, 2, 0, 1, 3, 3 6, 4, 1, 2, 6, 6 9, 6, 2, 4, 10, 10 12, 9, 4, 6, 15, 15 16, 12, 6, 9, 21, 21

B3 − 13, 3 22, 9 34, 21 50, 39

7, 3, 0, 0, 4, 1, 7, 5, 2, 1 13, 7, 1, 0, 10, 4, 17, 13, 7, 5 22, 13, 3, 1, 20, 10, 33, 27, 17, 13 34, 22, 7, 3, 35, 20, 57, 48, 33, 27 50, 34, 13, 7, 56, 35, 90, 78, 57, 48

A3 − − 35, 4 56, 16 84, 40

10, 0, 5, 12, 3 20, 1, 14, 30, 12 35, 4, 30, 60, 30 56, 10, 55, 105, 60 84, 20, 91, 168, 105

Table 2: Comparison of the SDPmatrix sizes. The columns are indexed by the order d of the Lasserre hierarchy. The
rows are indexed by the symmetry groupW . The upper entry perW\d gives the block sizes for the SPD matrices

in the orbit space reduction. The lower entry gives the block sizes with respect to the symmetry adapted basis.

I did not analyze the convergence rate of either approach, but only collected some computationaldata so far. For

three test functions, the results are shown in Table 3. The table indicates that the orbit space reduction yields better

numerical results and converges faster.

d 3 4 5 6 7

OSR −1.16667 −1.16667 −1.16667 −1.16667 −1.16667

SAB −1.18824 −1.180240 −1.17058 −1.16970 −1.16719

OSR −3.20499 −3.10220 −2.98718 −2.98718 −2.98718

SAB −3.50118 −3.40372 −3.31195 −3.25383 −3.22049

OSR −2.27496 −2.06250 −2.06250 −2.06250 −2.06250

SAB −2.12159 −2.10672 −2.1012 −2.09959 −2.09073

Table 3: Comparison of the numerical accuracy of the two symmetry reduction techniques for three different test

functions, see [HMMR24]. Note that the reduction via symmetry adapted basis (SAB) yields the same result as the

dense approach. Meanwhile, the orbit space reduction (OSR) has a different solution.
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2.4 Multiplicative Coinvariants

The two symmetry reduction techniques I presented so far, orbit space reduction and via symmetry adapted bases,

require a “setup process”. For orbit space reduction, this process is the computation of the polynomials defining the

orbit space. Our article [HMR24] provides an efficient way to do that. For reduction via symmetry adapted bases

on the other hand, the process involves the computation of said basis. This motivated Sebastian Debus from TU

Chemnitz and myself to write an article [DM24] on themultiplicative coinvariant space.

I will not give the definition of a coinvariant space here, but only emphasize that the motivation behind this the-

oretical object is to eliminate redundant copies of irreducibles modules in computational data. Having access to a

coinvariant basis allows the efficient computation of a symmetry adapted basis.

Instead of reinventing the wheel, the article with Debus draws a connection to a neighboring field of invariant

theory. Our main result allows the computation of a multiplicative coinvariant basis from a so called additive one

algorithmically.

3 Software Development

In order to verify the theoretical ideas preceding [HMR24, HMMR24, Met25, DM24], test the practicality and gain

new insights through experiments, I began with the open source development of a Maple package entitled Gener-

alizedChebyshev, which is available under

https://github.com/TobiasMetzlaff/GeneralizedChebyshev

From the basics, such as calculating orbits under symmetry groups, to the computation of moment matrices in the

Chebyshev basis and the symmetry adapted bases, this package equips the user with tools to conduct multiplicative

invariant theory in practice. The package is and will for the foreseeable future be maintained on my GitHub page.

Many software packages provide tools to compute moment matrices and SDP reductions for optimization, such

as GloptiPoly
1
or MomentTools

2
, but those only support the basis of standard monomials with permutation

symmetry and make the exploitation of more general crystallographic symmetries inconvenient.

The success of the package TSSOS
3
for sparsity exploitation, shows that specialized software is often advantageous

to use in practice.

I want to emphasize some of the distinguishing features of the package.

• The generalized Chebyshev polynomials, as they appear in several applications, are obtained via a recur-

rence formula |W|Tµ Tν =
∑

s Tµ+s(ν), which is, when implemented in a straightforward manner, very

inefficient. Using the theory from [Bou68], their calculation is improved significantly.

• The package allows to set up SDPs for the Lasserre hierarchy in the Chebyshev basis, which is, for crystallo-

graphic symmetry reductions, the natural choice.

• Similarly, the computation of symmetry adapted bases is also enhanced through theoretical understanding

of the underlying representation theory.

To summarize, although there are other computer algebra systems and softwares, which feature certain aspects

of the package in a more general context with more advanced tools, GeneralizedChebyshev combines all these

features in an overall more efficient manner and is tailored to connect the theory of crystallographic symmetries in

a coherent way with their exploitation in optimization.

1

https://homepages.laas.fr/henrion/software/gloptipoly3/

2

https://www-sop.inria.fr/members/Bernard.Mourrain/software/MomentTools/

3

https://wangjie212.github.io/TSSOS/dev/
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