The T-orbit space of the Weyl group B3
Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description
Evelyne Hubert, Tobias Metzlaff, Cordian Riener 2024
https://epubs.siam.org/doi/10.1137/23M158173X
Download this Maple worksheet at https://github.com/TobiasMetzlaff/GeneralizedChebyshev/blob/main/Maple%20Worksheets/t_orbit_space_b3.mw
Download the Maple package "GeneralizedChebyshev" at https://github.com/TobiasMetzlaff/GeneralizedChebyshev/blob/main/GeneralizedChebyshev.mpl
> | restart:
interface(warnlevel=0): with(LinearAlgebra): read("GeneralizedChebyshev.mpl"): with(GeneralizedChebyshev); |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(1) |
> | Type,n := B,3; |
![]() |
(2) |
The T-orbit space is the set of points $z=(z_1,z_2,z_3) \in \mathbb{R}^3$ with $H(z) \succeq 0$ (positive semi-definite).
Here, $H \in \mathbb{Q}[z_1,z_2,z_3]^{3 \times 3}$ is a 3-by-3 matrix polynomial.
In the standard monomial basis:
> | HermiteMatrix(Type,n) |
![]() |
(3) |
In the basis of generalized Chebyshev polynomials of the first kind associated to B3 (it is the same formula for all cases):
> | THermiteMatrix(Type,n) |
![]() |
(4) |
To compute the generalized Chebyshev polynomials in the standard monomial basis (for, e.g., the second entry, there is a scaling factor $3/4$ to make the formula as nice as possible.):
> | TPoly(Type,[1,0,0]) - TPoly(Type,[3,0,0]) |
![]() |
(5) |
For questions, please contact "math@tobiasmetzlaff.com".